Real-time EEG-based detection of fatigue driving danger for accident prediction.

Int J Neural Syst

Department of Mechanical Engineering and Automation, Northeastern University, 3-11, WenHua Road, Shenyang, Liaoning 110819, P. R. China.

Published: March 2015

This paper proposes a real-time electroencephalogram (EEG)-based detection method of the potential danger during fatigue driving. To determine driver fatigue in real time, wavelet entropy with a sliding window and pulse coupled neural network (PCNN) were used to process the EEG signals in the visual area (the main information input route). To detect the fatigue danger, the neural mechanism of driver fatigue was analyzed. The functional brain networks were employed to track the fatigue impact on processing capacity of brain. The results show the overall functional connectivity of the subjects is weakened after long time driving tasks. The regularity is summarized as the fatigue convergence phenomenon. Based on the fatigue convergence phenomenon, we combined both the input and global synchronizations of brain together to calculate the residual amount of the information processing capacity of brain to obtain the dangerous points in real time. Finally, the danger detection system of the driver fatigue based on the neural mechanism was validated using accident EEG. The time distributions of the output danger points of the system have a good agreement with those of the real accident points.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065715500021DOI Listing

Publication Analysis

Top Keywords

driver fatigue
12
fatigue
9
eeg-based detection
8
fatigue driving
8
real time
8
neural mechanism
8
processing capacity
8
capacity brain
8
fatigue convergence
8
convergence phenomenon
8

Similar Publications

Driver fatigue recognition using limited amount of individual electroencephalogram.

Biomed Eng Lett

January 2025

Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Republic of Korea.

Unlabelled: This study aims to create a fatigue recognition system that utilizes electroencephalogram (EEG) signals to assess a driver's physiological and mental state, with the goal of minimizing the risk of road accidents by detecting driver fatigue regardless of physical cues or vehicle attributes. A fatigue state recognition system was developed using transfer learning applied to partial ensemble averaged EEG power spectral density (PSD). The study utilized layer-wise relevance propagation (LRP) analysis to identify critical cortical regions and frequency bands for effective fatigue discrimination.

View Article and Find Full Text PDF

Objective: This study aimed to explore the clinical efficacy and safety of durvalumab combined with albumin-bound paclitaxel and carboplatin as neoadjuvant therapy for resectable stage III Non-small Cell Lung Cancer (NSCLC).

Methods: A single-arm open-label phase Ib study was conducted. A total of 40 patients with driver gene-negative resectable stage III NSCLC were enrolled.

View Article and Find Full Text PDF

Semantically-Enhanced Feature Extraction with CLIP and Transformer Networks for Driver Fatigue Detection.

Sensors (Basel)

December 2024

Department of Computer Science and Software Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.

Drowsy driving is a leading cause of commercial vehicle traffic crashes. The trend is to train fatigue detection models using deep neural networks on driver video data, but challenges remain in coarse and incomplete high-level feature extraction and network architecture optimization. This paper pioneers the use of the CLIP (Contrastive Language-Image Pre-training) model for fatigue detection.

View Article and Find Full Text PDF

Background: Road traffic accidents (RTAs) are a critical public health problem leading to significant morbidity, mortality, and socioeconomic losses. Despite known risk factors like substance use and sleep-related problems, there is limited research on the prevalence of these factors among drivers who met with RTAs. Hence, this study aimed to gain insight into the prevalence of substance use and sleep-related problems among this population attending a trauma center in the northern State of India.

View Article and Find Full Text PDF

Genomic Patterns are Associated with Different Sequelae of Patients with Long-Term COVID-19.

Adv Sci (Weinh)

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Pathobiology Ministry of Education, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.

In the post-large era, various COVID-19 sequelae are getting more and more attention to health problems. Although the mortality rate of the COVID-19 infection is now declining, it is often accompanied by new clinical sequelae with different symptoms such as fatigue after infection, loss of smell. The degree of age, gender, virus infection seems to be weakly correlated with clinical symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!