Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles.

J Control Release

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen O, Denmark.

Published: March 2015

Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(DL-lactic-co-glycolic acid) (PLGA) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X-ray scattering (SAXS) and confocal laser scanning microscopy (CLSM) studies suggested that the siRNA-loaded LPNs are characterized by a core-shell structure consisting of a PLGA matrix core coated with lamellar DOTAP structures with siRNA localized both in the core and in the shell. Release studies in buffer and serum-containing medium combined with in vitro gene silencing and quantification of intracellular siRNA suggested that this self-assembling core-shell structure influences the siRNA release kinetics and the delivery dynamics. A main delivery mechanism appears to be mediated via the release of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2014.12.026DOI Listing

Publication Analysis

Top Keywords

delivery dynamics
12
lipid-polymer hybrid
8
hybrid nanoparticles
8
sirna-loaded lpns
8
core-shell structure
8
sirna
5
lpns
5
mechanistic profiling
4
profiling sirna
4
delivery
4

Similar Publications

Data from large-scale, randomized, controlled trials demonstrate that contemporary treatments for heart failure (HF) can substantially improve morbidity and mortality. Despite this, observed outcomes for patients living with HF are poor, and they have not improved over time. The are many potential reasons for this important problem, but inadequate use of optimal medical therapy for patients with HF, an important component of guideline-directed medical therapy, in routine practice is a principal and modifiable contributor.

View Article and Find Full Text PDF

Biomolecular motors are dynamic systems found in organisms with high energy conversion efficiency. FF-ATPase is a rotary biomolecular motor known for its near 100% energy conversion efficiency. It utilizes the synthesis and hydrolysis of ATP to induce conformational changes in motor proteins, thereby converting chemical energy into mechanical motion.

View Article and Find Full Text PDF

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

The high mobility and dynamic nature of unmanned aerial vehicles (UAVs) pose significant challenges to clustering and routing in flying ad hoc networks (FANETs). Traditional methods often fail to achieve stable networks with efficient resource utilization and low latency. To address these issues, we propose a hybrid bio-inspired algorithm, HMAO, combining the mountain gazelle optimizer (MGO) and the aquila optimizer (AO).

View Article and Find Full Text PDF

Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!