[Purpose] The purpose of this study was to demonstrate the effects of expiration on abdominal muscle activity during maximum trunk flexion. [Subjects] Twenty-one healthy university students (10 men, 11 women) participated in this study. [Methods] Electromyography (EMG) was used to quantify the activity of the right rectus abdominis, external oblique, and internal oblique muscles. The paired t-test was used to examine the significance of differences in the abdominal muscles between maximum trunk flexion with breath holding and slow expiration. [Results] There was a significantly lower EMG activity in the external oblique muscle during maximum trunk flexion with slow expiration. [Conclusion] The results of this study indicate that slow expiration reduces external oblique muscle activity during maximum trunk flexion performed by healthy young subjects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273058 | PMC |
http://dx.doi.org/10.1589/jpts.26.1919 | DOI Listing |
Plants (Basel)
January 2025
Integrated Crop Production Research Unit, Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco.
(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
Southwest University of Science and Technology, No. 59, Middle Section of Qinglong Avenue, Fucheng District, Mianyang City, Sichuan Province, Mianyang, Sichuan, 621010, CHINA.
The Cable-Driven Hyper-redundant Manipulator (CDHM), distinguished by its high flexibility and adjustable stiffness, is extensively utilized in confined and obstacle-rich environments such as aerospace and nuclear facilities. This paper introduces a novel CDHM inspired by the trunk of elephants, which changes the arm structure from cylindrical to conical. This alteration diminishes the arm's self-weight, reduces the moment arm of gravity, decreases the volume of the end joint, narrows the stroke of the driving cables, and boosts the maximum joint speed of the manipulator.
View Article and Find Full Text PDFSci Rep
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.
View Article and Find Full Text PDFPLoS One
January 2025
Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, Australia.
Background: Treadmill belt perturbations have high clinical feasibility for use in perturbation-based training in older people, but their kinematic validity is unclear. This study examined the kinematic validity of treadmill belt accelerations as a surrogate for overground walkway trips during gait in older people.
Methods: Thirty-eight community-dwelling older people were exposed to two unilateral belt accelerations (8 m s-2) whilst walking on a split-belt treadmill and two trips induced by a 14 cm trip-board whilst walking on a walkway with condition presentation randomised.
Trials
January 2025
Department of Physical Education, Sports Center, Federal University of Santa Catarina, University Campus Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil.
Background: Physical exercise is crucial in type 2 diabetes management (T2D), and training in the aquatic environment seems to be a promising alternative due to its physical properties and metabolic, functional, cardiovascular, and neuromuscular benefits. Research on combined training in aquatic and dry-land training environments is scarce, especially in long-term interventions. Thus, this study aims to investigate the effects of combined training in both environments on health outcomes related to the management of T2D patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!