Unlabelled: Influenza A virus (IAV) infections are influenced by type 1 interferon-mediated antiviral defenses and by viral countermeasures to these defenses. When IAV NS1 protein is disabled, RNase L restricts virus replication; however, the RNAs targeted for cleavage by RNase L under these conditions have not been defined. In this study, we used deep-sequencing methods to identify RNase L cleavage sites within host and viral RNAs from IAV PR8ΔNS1-infected A549 cells. Short hairpin RNA knockdown of RNase L allowed us to distinguish between RNase L-dependent and RNase L-independent cleavage sites. RNase L-dependent cleavage sites were evident at discrete locations in IAV RNA segments (both positive and negative strands). Cleavage in PB2, PB1, and PA genomic RNAs suggests that viral RNPs are susceptible to cleavage by RNase L. Prominent amounts of cleavage mapped to specific regions within IAV RNAs, including some areas of increased synonymous-site conservation. Among cellular RNAs, RNase L-dependent cleavage was most frequent at precise locations in rRNAs. Our data show that RNase L targets specific sites in both host and viral RNAs to restrict influenza virus replication when NS1 protein is disabled.
Importance: RNase L is a critical component of interferon-regulated and double-stranded-RNA-activated antiviral host responses. We sought to determine how RNase L exerts its antiviral activity during influenza virus infection. We enhanced the antiviral activity of RNase L by disabling a viral protein, NS1, that inhibits the activation of RNase L. Then, using deep-sequencing methods, we identified the host and viral RNAs targeted by RNase L. We found that RNase L cleaved viral RNAs and rRNAs at very precise locations. The direct cleavage of IAV RNAs by RNase L highlights an intimate battle between viral RNAs and an antiviral endonuclease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325751 | PMC |
http://dx.doi.org/10.1128/JVI.02953-14 | DOI Listing |
BMC Cancer
December 2024
Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.
Background: This study aimed to investigate the potential utility of Epithelial-mesenchymal transition (EMT) signaling cell detection in the early diagnosis of cervical lesions.
Methods: Enrichment of cervical epithelial cells was carried out using a calibrated membrane with 8-μm diameter pores. RNA-in situ hybridization (RNA-ISH) was employed to detect and characterize EMT cells utilizing specific EMT markers.
Sci Rep
December 2024
Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Budapest, Hungary.
Plant viruses have evolved different viral suppressors of RNA silencing (VSRs) to counteract RNA silencing which is a small RNA-mediated sequence-specific RNA degradation mechanism. Previous studies have already shown that the coat protein (CP) of cucumber mosaic virus (CMV) reduced RNA silencing suppression (RSS) activity of the VSR of CMV, the 2b protein. To demonstrate the universality of this CP-VSR interference, our study included three different viruses: CMV and peanut stunt virus (PSV) from the Bromoviridae, and plum pox virus (PPV) from the Potyviridae family.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Rehabilitative medicine, Shaanxi Provincial People's Hospital, No.256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
COVID-19 has been emerging as the most influential illness which has caused great costs to the heath of population and social economy. Sivelestat sodium (SS) is indicated as an effective cure for lung dysfunction, a characteristic symptom of COVID-19 infection, but its pharmacological target is still unclear. Therefore, a deep understanding of the pathological progression and molecular alteration is an urgent issue for settling the diagnosis and therapy problems of COVID-19.
View Article and Find Full Text PDFSci Rep
December 2024
School of Dentistry, University of California Los Angeles, 10833 Le Conte Ave., 73-022 CHS, Los Angeles, CA, 90095-1668, USA.
We developed a 4-parameter clinical assay using Electric Field Induced Release and Measurement (EFIRM) technology to simultaneously assess SARS-CoV-2 RNA (vRNA), nucleocapsid antigen, host binding (BAb) and neutralizing antibody (NAb) levels from a drop of saliva with performance that equals or surpasses current EUA-approved tests. The vRNA and antigen assays achieved lower limit of detection (LOD) of 100 copies/reaction and 3.5 TCID₅₀/mL, respectively.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
Hypomethylating agents (HMAs) such as azacytidine and decitabine are FDA-approved chemotherapy drugs for hematologic malignancy. By inhibiting DNA methyltransferases, HMAs reactivate tumor suppressor genes (TSGs) and endogenous double-stranded RNAs (dsRNAs) that limit tumor growth and trigger apoptosis via viral mimicry. Yet, HMAs show limited effects in many solid tumors despite the strong induction of TSGs and dsRNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!