Nearly all Streptococcus agalactiae (group B streptococcus [GBS]) strains express a protein which belongs to the so-called alpha-like proteins (Alps), of which Cα, Alp1, Alp2, Alp3, Rib, and Alp4 are known to occur in GBS. The Alps are chimeras which form mosaic structures on the GBS surface. Both N- and C-terminal stretches of the Alps possess immunogenic sites of dissimilar immunological specificity. In this review, we have compiled data dealing with the specificity of the N- and C-terminal immunogenic sites of the Alps. The majority of N-terminal sites show protein specificity while the C-terminal sites show broader cross-reactivity. Molecular serotyping has revealed that antibody-based serotyping has often resulted in erroneous Alp identification, due to persistence of cross-reacting antibodies in antisera for serotyping. Retrospectively, this could be expected on the basis of sequence analysis results. Some of the historical R proteins are in fact Alps. The data included in the review may provide a basis for decisions regarding techniques for the preparation of specific antisera for serotyping of GBS, for use in other approaches in GBS research, and for decision making in the context of GBS vaccine developments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308872 | PMC |
http://dx.doi.org/10.1128/CVI.00643-14 | DOI Listing |
Cancer Lett
January 2025
Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. Electronic address:
Anorexia is a major cause of cancer cachexia and is induced by growth differentiation factor-15 (GDF15), which activates the rearranged during transfection (RET) protein tyrosine kinase in the hindbrain through GDF family receptor α-like (GFRAL), raising the possibility of targeting RET for cancer cachexia treatment. RET-altered cancer patients treated with RET-selective kinase inhibitors gain weight, however, it is unclear whether this results from tumor regression that improves the overall health of patients. Thus, the potential of using a RET inhibitor to address cancer cachexia remains unknown.
View Article and Find Full Text PDFNat Commun
December 2024
Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Growth differentiation factor 15, GDF15, and glucagon-like peptide-1 (GLP-1) analogues act through brainstem neurons that co-localise their receptors, GDNF-family receptor α-like (GFRAL) and GLP1R, to reduce food intake and body weight. However, their use as clinical treatments is partially hampered since both can also induce sickness-like behaviours, including aversion, that are mediated through a well-characterised pathway via the exterolateral parabrachial nucleus. Here, in mice, we describe a separate pathway downstream of GFRAL/GLP1R neurons that involves a distinct population of brain-derived neurotrophic factor (BDNF) cells in the medial nucleus of the tractus solitarius.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and National Clinical Research Center for Geriatrics and Laboratory of Molecular Targeted Therapy in Oncology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
The growth differentiation factor 15 (GDF15)-glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL) pathway plays a crucial role in the regulation of metabolism, appetite and body weight control. Obesity is an increasingly prevalent chronic disease worldwide, necessitating effective treatment strategies. Recent preclinical and clinical studies have highlighted that targeting the GDF15-GFRAL signalling pathway is a promising approach for treating obesity, particularly because it has minimal impact on skeletal muscle mass, which is essential to preserve during weight loss.
View Article and Find Full Text PDFBrain Behav Immun
February 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy. Electronic address:
Weight loss is a common early sign in amyotrophic lateral sclerosis (ALS) patients and negatively correlates with survival. In different cancers and metabolic disorders, high levels of serum growth differentiation factor 15 (GDF15) contribute to a decrease of food intake and body weight, acting through GDNF family receptor alpha-like (GFRAL). Here we report that GDF15 is highly expressed in the peripheral blood of ALS patients and in the hSOD1 mouse model and that GFRAL is upregulated in the brainstem of hSOD1 mice.
View Article and Find Full Text PDFMol Metab
January 2025
Research Institute of the McGill University Health Centre, McGill University Health Centre, 1001 boulevard de Decarie, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, 1001 boulevard de Decarie, Montreal, QC, H4A 3J1, Canada; Integrated Program in Neuroscience, Department of Medicine, McGill University, Room 302 Irving Ludmer Building, 1033 Pine Ave. W. Montreal, QC, H3A 1A1, Canada. Electronic address:
Objective: Growth differentiation factor 15 (GDF15) acts on the receptor dimer of GDNF family receptor alpha-like (GFRAL) and Rearranged during transfection (RET). While Gfral-expressing cells are known to be present in the area postrema and nucleus of the solitary tract (AP/NTS) located in the brainstem, the presence of Gfral-expressing cells in other sites within the central nervous system and peripheral tissues is not been fully addressed. Our objective was to thoroughly investigate whether GFRAL is expressed in peripheral tissues and in brain sites different from the brainstem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!