A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET.

J R Soc Interface

Department of Neurological Surgery, Northwestern University and Feinberg School of Medicine, 676 N Saint Clair Street, Suite 1300, Chicago, IL 60611, USA Northwestern Brain Tumor Institute, Northwestern University, 675 N Saint Clair Street, Suite 2100, Chicago, IL 60611, USA.

Published: February 2015

Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [(18)F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model-data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305419PMC
http://dx.doi.org/10.1098/rsif.2014.1174DOI Listing

Publication Analysis

Top Keywords

radiation
9
computational model
8
radiation resistance
8
radiation treatment
8
model
5
patient-specific computational
4
model hypoxia-modulated
4
hypoxia-modulated radiation
4
resistance glioblastoma
4
glioblastoma 18f-fmiso-pet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!