We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing (1)H and (13)C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the (1)H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3](+) is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)](+) and the resulting acetonitrile (1)H signal enhancement increases to 20- and 60-fold, respectively. In (13)C NMR studies, polarization transfers optimally to the quaternary (13)C nucleus of MeCN while the methyl (13)C is hardly polarized. Transfer to (13)C is shown to occur first via the (1)H-(1)H coupling between the hydrides and the methyl protons and then via either the (2)J or (1)J couplings to the respective (13)Cs, of which the (2)J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of (1)H nuclei in the three-spin methyl group are created. Two-spin order states, between the (1)H and (13)C nuclei, are also created, and their existence is confirmed for Me(13)CN in both the (1)H and (13)C NMR spectra using the Only Parahydrogen Spectroscopy protocol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315046 | PMC |
http://dx.doi.org/10.1021/jp511492q | DOI Listing |
J Magn Reson
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:
The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.
View Article and Find Full Text PDFJ Magn Reson
December 2024
UNB MRI Research Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada. Electronic address:
Multinuclear H, C, and Na magnetic resonance (MR) has many advantages for studying porous media systems containing hydrocarbons and brine. In recent work, we have explored changing the nucleus measured, keeping the Larmor frequency constant, by changing the static magnetic field B. Increasing the static B field distorts the field in the pore space due to susceptibility mismatch between the matrix and pore fluid.
View Article and Find Full Text PDFChemistry
January 2025
Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany.
Hyperpolarization of C nuclei in biomolecules and their administration as imaging agents enables in-vivo monitoring of metabolism. This approach has demonstrated potential for deriving imaging biomarkers for cancer detection, differentiation, and therapy efficacy assessment. The in situ generation of polarized substrates using a permanent addition of parahydrogen to an unsaturated precursor inside the bore of an MRI system used for subsequent imaging circumvents the need for a dedicated external polarizer.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
Department of Chemical and Biological Physics, Weizmann Institute, 7610001 Rehovot, Israel.
NMR finds a wide range of applications, ranging from fundamental chemistry to medical imaging. The technique, however, has an inherently low signal-to-noise ratio (SNR)─particularly when dealing with nuclei having low natural abundances and/or low γs. In these cases, sensitivity is often enhanced by methods that, similar to INEPT, transfer polarization from neighboring Hs via -couplings.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.
The reaction of [CpTh(3,3-diphenylcyclopropenyl)] (Cp = η-CH) with 1 equiv of lithium diisopropylamide (LDA) results in cyclopropenyl ring opening and formation of the thorium allenylidene complex, [Li(EtO)][CpTh(CCCPh)] ([Li(EtO)][]), in good yield. Additionally, deprotonation of [CpTh(3,3-diphenylcyclopropenyl)] with 1 equiv of LDA, in the presence of 12-crown-4 or 2.2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!