Highly twisted π-conjugated molecules have been attractive but challenging targets. We report here an efficient synthesis of highly twisted diporphyrins with 126° and 136° twist angles that involves an oxidative fusion reaction of planar aminoporphyrin precursors at room temperature. Repeated amination-oxidative fusion sequences provide a unidirectionally twisted tetramer. The twisting angle of the tetramer is 298°.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja511905f | DOI Listing |
Small Methods
January 2025
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
Hexaanionic cyclophosphazenate ligands [(RN)PN] provide versatile platforms for the assembly of multinuclear metal arrays due to their multiple coordination sites and highly flexible ligand core structure. This work investigates the impact of incrementally increasing the steric demand of the ligand periphery on the coordination behavior of ethylzinc arrays. It shows that the increased congestion around the ligand sites is alleviated by progressive condensation with the elimination of diethylzinc.
View Article and Find Full Text PDFAdv Mater
January 2025
Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain.
Twisting 2D van der Waals magnets allows the formation and control of different spin-textures, as skyrmions or magnetic domains. Beyond the rotation angle, different spin reversal processes can be engineered by increasing the number of magnetic layers forming the twisted van der Waals heterostructure. Here, pristine monolayers and bilayers of the A-type antiferromagnet CrSBr are considered as building blocks.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, State Key Laboratory of Polymer Physics and Chemistry, No.159 Renmin Street, 130022, Changchun, CHINA.
The multiple resonance thermally activated delayed fluorescence (MR-TADF) device has drawn great attention due to their outstanding efficiency and color purity. However, the efficiency of solution-processed MR-TADF devices is still far behind their vacuum-deposited counterparts, due to the uncontrollable horizontal emitting dipole orientation for emitters during solution process, resulting in low light out-coupling efficiency. Here, we proposed a new strategy namely electrostatic interaction between a dendritic host with high positive electrostatic potential (ESP) and dendritic emitter with multiple negative ESP sites, which could induce high horizontal dipole ratio (ΘII) up to 83.
View Article and Find Full Text PDFSci Adv
January 2025
School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.
Actuation is normally dramatically enhanced by introducing so much yarn fiber twist that the fiber becomes fully coiled. In contrast, we found that usefully high muscle strokes and contractile work capacities can be obtained for non-twisted MXene (TiCT) fibers comprising MXene nanosheets that are stacked in the fiber direction. The MXene fiber artificial muscles are called MFAMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!