Fluorescence molecular tomography (FMT) is a promising imaging technique in preclinical research, enabling three-dimensional location of the specific tumor position for small animal imaging. However, FMT presents a challenging inverse problem that is quite ill-posed and ill-conditioned. Thus, the reconstruction of FMT faces various challenges in its robustness and efficiency. We present an FMT reconstruction method based on nonmonotone spectral projected gradient pursuit (NSPGP) with /₁-norm optimization. At each iteration, a spectral gradient-projection method approximately minimizes a least-squares problem with an explicit one-norm constraint. A nonmonotone line search strategy is utilized to get the appropriate updating direction, which guarantees global convergence. Additionally, the Barzilai-Borwein step length is applied to build the optimal step length, further improving the convergence speed of the proposed method. Several numerical simulation studies, including multisource cases as well as comparative analyses, have been performed to evaluate the performance of the proposed method. The results indicate that the proposed NSPGP method is able to ensure the accuracy, robustness, and efficiency of FMT reconstruction. Furthermore, an in vivo experiment based on a heterogeneous mouse model was conducted, and the results demonstrated that the proposed method held the potential for practical applications of FMT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.19.12.126013 | DOI Listing |
Int J Med Inform
January 2025
Department of Computer Science and Artificial Intelligence, University of Udine, 33100, Italy.
Background: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data.
Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images.
Biomed Phys Eng Express
January 2025
Chiba University Center for Frontier Medical Engineering, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, JAPAN.
Traumatic injury remains a leading cause of death worldwide, with traumatic bleeding being one of its most critical and fatal consequences. The use of whole-body computed tomography (WBCT) in trauma management has rapidly expanded. However, interpreting WBCT images within the limited time available before treatment is particularly challenging for acute care physicians.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Brain Health Imaging Centre, Centre for Addiction and Mental Health, B68-250 College St, Toronto, Ontario, M5T 1R8, CANADA.
Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Medical Imaging, Jincheng People's Hospital, Shanxi, China.
Rationale: Thrombus is the most common occupying lesion in the cardiac chambers, it is often distinguished from cardiac neoplastic occupations. Among them, the most common is cardiac myxoma, whose imaging manifestations are often confused with thrombus. However, the 2 types of lesions have different therapeutic strategies and are both potentially high-risk sources of embolism, so early differentiation between intracardiac thrombus and cardiac tumor is essential.
View Article and Find Full Text PDFJ Neurosurg
January 2025
Departments of1Biomedical Engineering.
Objective: Epilepsy is a common neurological disease affecting nearly 1% of the global population, and temporal lobe epilepsy (TLE) is the most common type. Patients experience recurrent seizures and chronic cognitive deficits that can impact their quality of life, ability to work, and independence. These cognitive deficits often extend beyond the temporal lobe and are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!