Electrocatalytic proton reduction by dimeric nickel complex of a sterically demanding pincer-type NS2 aminobis(thiophenolate) ligand.

Inorg Chem

Instituto de Química and ‡Facultad de Química, Universidad Nacional Autónoma de Mexico, Circuito Exterior, CU , Ciudad de México, DF, 04510, México.

Published: January 2015

Basic methanolysis of a sterically hindered aminobis(S-arylthiocarbamate) affords a novel aminobis(thiophenolate) pincer-type ligand NS22–; the in situ generated dianion reacts cleanly with Ni2+ and Zn2+ resulting in dimeric complexes with bridging thiophenolate ligands, as determined spectroscopically and by X-ray crystallography. The C2-symmetric [Ni(NS2)]2 dimer (1) has a square planar coordination geometry around the Ni2+ ions, while the [Zn(NS2)]2 analogue (2) is characterized by a distorted tetrahedral geometry around each independent Zn2+ ion. Addition of the neutral monodentate donor L = 2,6-xylylisocyanide to [Ni(NS2)]2 affords the monomeric complex [LNi(NS2)] (3), which is characterized in the solid state by a square planar geometry with the isocyanide donor trans to the tertiary amine of NS2. The pincer NS2 ligand provides redox plasticity to 1, manifested in the accessibility of the putative Ni+Ni+ and Ni3+Ni3+ dimeric complexes, based on comparative cyclic voltammetry studies with 2 and 3. The redox properties of 1 endow it with hydrogenase-type activity, as evidenced in the electrocatalytic reduction of protons in a mixed aqueous/organic phase, as well as the oxidation of hydrides from NaBH(OAc)3. Both 1 and 3 are resilient under protic and oxidative conditions, as evidenced in reactivity tests monitored by UV–vis spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic502547yDOI Listing

Publication Analysis

Top Keywords

dimeric complexes
8
square planar
8
electrocatalytic proton
4
proton reduction
4
reduction dimeric
4
dimeric nickel
4
nickel complex
4
complex sterically
4
sterically demanding
4
demanding pincer-type
4

Similar Publications

Herein, we report the solvent-dependent reactivity of Fe(CO) toward AsF in either anhydrous HF or liquid SO. The reaction of Fe(CO) with the superacid HF/AsF leads to the protonation of the iron center and allows for the first-time structural characterization of [FeH(CO)] in the solid state, representing one of the most acidic transition metal hydride complexes to ever be isolated and structurally characterized. In the aprotic but oxidation-stable solvent SO, Fe(CO) is oxidized and dimerized to [Fe(CO)], which is isoelectronic with well-known Mn(CO).

View Article and Find Full Text PDF

The aim of this study was to purify BMP-2 in an easy and time-efficient way. We have developed a new method in which BMP-2 is produced through leaky expression in E. coli BL21 (DE3) cells as inclusion bodies, eliminating the need for inducer Isopropyl β-D-1-thiogalactopyranoside (IPTG).

View Article and Find Full Text PDF

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

Chemically induced dimerization/proximity (CID/CIP) systems controlled by chemical dimerizers (also known as molecular glues) provide valuable means for understanding and manipulating complex, dynamic biological systems. In this study, we present the development of versatile chemo-optogenetic systems utilizing azobenzene-based photoswitchable molecular glues (sMGs) for reversible protein dimerization controlled by visible light. These systems allow multiple cycles of light-induced dimerization, overcoming the limitations of irreversible photolysis in previous systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!