The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility.

PeerJ

Department of Biological Sciences, Vanderbilt University, Nashville, TN , USA ; Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN , USA.

Published: December 2014

Wolbachia pipientis is a worldwide bacterial parasite of arthropods that infects germline cells and manipulates host reproduction to increase the ratio of infected females, the transmitting sex of the bacteria. The most common reproductive manipulation, cytoplasmic incompatibility (CI), is expressed as embryonic death in crosses between infected males and uninfected females. Specifically, Wolbachia modify developing sperm in the testes by unknown means to cause a post-fertilization disruption of the sperm chromatin that incapacitates the first mitosis of the embryo. As these Wolbachia-induced changes are stable, reversible, and affect the host cell cycle machinery including DNA replication and chromosome segregation, we hypothesized that the host methylation pathway is targeted for modulation during cytoplasmic incompatibility because it accounts for all of these traits. Here we show that infection of the testes is associated with a 55% increase of host DNA methylation in Drosophila melanogaster, but methylation of the paternal genome does not correlate with penetrance of CI. Overexpression and knock out of the Drosophila DNA methyltransferase Dnmt2 neither induces nor increases CI. Instead, overexpression decreases Wolbachia titers in host testes by approximately 17%, leading to a similar reduction in CI levels. Finally, strength of CI induced by several different strains of Wolbachia does not correlate with levels of DNA methylation in the host testes. We conclude that DNA methylation mediated by Drosophila's only known methyltransferase is not required for the transgenerational sperm modification that causes CI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266856PMC
http://dx.doi.org/10.7717/peerj.678DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
cytoplasmic incompatibility
12
host testes
8
methylation
6
host
6
wolbachia
5
dna
5
relative dna
4
methylation dnmt2-mediated
4
dnmt2-mediated epigenetic
4

Similar Publications

Bisphenol A alters JUN promoter methylation, impairing steroid metabolism in placental cells and linking to sub-representative phenotypes.

Gene

January 2025

School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Engineering Research Center of Gene Technology, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China. Electronic address:

Bisphenol A (BPA) is a widely used industrial compound commonly found in various everyday plastic products. Known for its endocrine-disrupting properties, BPA can enter the human body through multiple pathways. Prenatal exposure to BPA not only disrupts placental structure and function but also interferes with normal steroid metabolism.

View Article and Find Full Text PDF

Decoding the protein methylome: Identification, validation, and functional insights.

Bioorg Med Chem

December 2024

Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States. Electronic address:

Protein methylation regulates diverse cellular processes including gene expression and DNA repair. This review discusses the methods of identifying and validating substrates for protein methyltransferases (MTases), as well as the biological roles of methylation. Meanwhile, we outline continued efforts necessary to fully map MTase-substrate pairs and uncover the complex regulatory roles of protein methylation in cellular function.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) data from human samples has been leveraged to develop "epigenetic clock" algorithms that predict age and other aging-related phenotypes. Some DNAm clocks were trained using DNAm obtained from blood cells, while other clocks were trained using data from diverse tissue/cell types. To assess how DNAm clocks perform across non-blood tissue types, we applied DNAm algorithms to DNAm data generated from 9 different human tissue types.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!