Three-dimensional printing technology has significant clinical implications for the management of congenital heart disease. Computed tomography and magnetic resonance imaging have been established as imaging tools for the creation of physical three-dimensional models. The potential use of non-invasive bedside imaging techniques such as three-dimensional echocardiography to derive three-dimensional printed models can revolutionize the planning of interventions for complex congenital malformations. The feasibility of deriving three-dimensional printing from ultrasound provides an additional cost-effective and patient-centered option for interventional cardiologists and surgeons for the management and care of congenital heart disease patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501950 | PMC |
http://dx.doi.org/10.1007/s10278-014-9761-5 | DOI Listing |
PLoS One
December 2024
Department of General Surgery, Cancer center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, China.
Complex liver cancer is often difficult to expose or dissect, and the surgery is often challenging. 3D-printed models may realistically present 3D anatomical structure, which has certain value in planning and training of liver surgery. However, the existing 3D-printed models are all monolithic models, which are difficult to reuse and limited in clinical application.
View Article and Find Full Text PDFArch Orthop Trauma Surg
December 2024
Virtua Health, Marlton, NJ, USA.
Objective: The primary research aim was to determine if the use of traditional or 3D printed prosthesis resulted in better functional outcome scores in hip arthroplasty.
Methods: A systematic review and meta-analysis was conducted utilizing the PRISMA 2020 guidelines. Six databases (PubMed, Embase, Scopus, WebOfScience, and Cochrane Library, Google Scholar) were searched yielding 1117 article titles and abstracts.
J Cardiovasc Dev Dis
December 2024
Department of Anesthesiology, University Children's Hospital, 30-663 Krakow, Poland.
Background: Major aortopulmonary collateral arteries (MAPCAs) are rare remnants of pulmonary circulation embryological development usually associated with complex congenital anomalies of the right ventricular outflow tract and pulmonary arteries. Effective management requires surgical unifocalization of MAPCAs and native pulmonary arteries (NPAs). Traditional imaging may lack the spatial clarity needed for precise surgical planning.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan.
Three-dimensional (3D) printing is an advanced technology for accurately understanding anatomy and supporting the successful surgical management of complex congenital heart disease (CHD). We aimed to evaluate whether our super-flexible 3D heart models could facilitate preoperative decision-making and surgical simulation for complex CHD. The super-flexible heart models were fabricated by stereolithography 3D printing of the internal and external contours of the heart from cardiac computed tomography (CT) data, followed by vacuum casting with a polyurethane material similar in elasticity to a child's heart.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Surgery is considered the gold standard for treating melanoma, but the high recurrence rate after surgery still remains as a major challenge. Therefore, using doxorubicin (DOX) as a model drug, this study investigated the 3D printing of anticancer drug-loaded hydrogel blend scaffolds for inhibiting post-operation melanoma recurrence and for promoting tissue regeneration. Three-dimensional printing could successfully produce methacrylate-modified chitosan (CSMA) and methylcellulose (MC) hydrogel blend scaffolds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!