Concise review: growing hearts in the right place: on the design of biomimetic materials for cardiac stem cell differentiation.

Stem Cells

Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris, CNRS UMR, Paris, France; Sorbonne Paris Cité, Paris Descartes University, Paris, France; INSERM U970, Paris, France.

Published: April 2015

Tissue engineering aims at recapitulating permissive conditions that enable cells to collaborate and form functional tissues. Applications range from human tissue modeling for diagnostic purposes to therapeutic solutions in regenerative medicine and surgery. Across this spectrum, human stem cells are the active ingredient, expandable virtually indefinitely and with the propensity to generate new tissue. Engaging lineage-specific differentiation requires a precise concerto of key spatial and temporal factors, such as soluble molecules and growth factors, but also physical and mechanical stimuli. These stimuli compete to modulate distinct developmental signaling pathways and ultimately affect the differentiation efficiency. The heart is a chemo-mechano-electrical biological system that behaves as both a sensor and an actuator. It can transduce electrical inputs to generate mechanical contraction and electrical wave propagation. Such a complex organ arises from multipart developmental events that interact with one another to self-regulate. Here, we overview the main events of heart development and the role of mechanical forces in modifying the microenvironment of the progenitor cells. We analyze the cascades regulating cardiac gene activation to illustrate how mechanotransduction is already involved in the most popular protocols for stem cell differentiation (SCD) into cardiomyocytes. We then review how forces are transmitted to embryonic stem cells by cell-substrate or cell-cell communications, and how biomaterials can be designed to mimic these interactions and help reproduce key features of the developmental milieu. Putting this back in a clinical perspective, many challenges need to be overcome before biomaterials-based SCD protocols can be scaled up and marketed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.1929DOI Listing

Publication Analysis

Top Keywords

stem cell
8
cell differentiation
8
stem cells
8
concise review
4
review growing
4
growing hearts
4
hearts place
4
place design
4
design biomimetic
4
biomimetic materials
4

Similar Publications

Inborn errors of immunity (primary immunodeficiencies).

Allergy Asthma Clin Immunol

January 2025

Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada.

Primary immunodeficiencies (PID), now often referred to as inborn errors of immunity (IEI), are a large heterogeneous group of disorders that result from deficiencies in immune system development and/or function. IEIs can be broadly classified as disorders of adaptive immunity (e.g.

View Article and Find Full Text PDF

Implant failure of the Compress prosthesis: a case report.

J Med Case Rep

January 2025

Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.

Background: The Compress is designed to achieve bone formation and stability by applying pressure at the bone-implant interface, minimizing the likelihood of aseptic loosening, which is a complication of stem implants. Herein, we report two cases of implant failure using the Compress.

Case Presentation: Case 1 describes a 36 year-old Japanese man who underwent extraarticular tumor resection, Compress arthroplasty, and reconstruction with a gastrocnemius flap after preoperative chemotherapy for a secondary malignant giant cell tumor in the right distal femur.

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Background: This in vitro study evaluated the efficacy of professional and home-use fluoride regimens for protecting irradiated enamel, undergoing pH cycling resembling xerostomia.

Methods: Sixty human premolar teeth were irradiated with a total dose of 70 Gy and subsequently sectioned into 3 × 3 cm enamel slabs. These slabs were randomly distributed into five groups (n = 12 per group): professional-use groups received fluoride varnish either weekly (FV1) or biweekly (FV2); home-use groups applied 5000 ppm (FT5) or 1450 ppm (FT) fluoride toothpaste; and a control group (control) received no treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!