Purpose: The purpose of this study was to investigate the thiol repair systems of thioltransferase (TTase) and thioredoxin (Trx) and oxidation-damaged proteins in human cataractous lenses.
Methods: Cataractous lenses in humans (57-85 years of age) were classified into cortical, nuclear, mixed, mature, and hypermature cataract types by using a lens opacity classification system, and were obtained by extracapsular cataract extraction (ECCE) procedure. Cortical and nuclear cataracts were grouped by decreasing order of visual acuity into optical chart reading (R), counting fingers (CF), hand motion (HM), and light perception (LP). ECCE lens homogenate was analyzed for glutathione (GSH) level and enzyme activities of TTase, glutathione reductase (GR), Trx, and thioredoxin reductase (TR). Cortical and nuclear cataractous lenses (8 of each) with visual acuity better than HM were each dissected into cortical and nuclear portions for measurement of glyceraldehyde 3-phosphate dehydrogenase (G3PD) activity. Clear lenses (in humans 49-71 years of age) were used as control.
Results: Compared with control, all cataractous lenses lost more than 80% GSH and 70% GR; TR and Trx activity; and 40% to 70% TTase activity, corroborated with the loss in visual acuity. Among cataracts with R and CF visual acuity, cortical cataract lost more cortical G3PD activity (18% of control) than that of nuclear cataract (50% of control), whereas GSH depletion and TTase inactivation were similar in both cataracts.
Conclusions: Thiol repair systems were damaged in all types of cataracts. Cortical and nuclear cataracts showed differential G3PD inactivation in the cortex, implying those 2 type of cataracts might be formed through different mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306347 | PMC |
http://dx.doi.org/10.1167/iovs.14-15452 | DOI Listing |
J Neurol
January 2025
Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
Background: Anti-IgLON5 disease is a rare autoimmune neurological disorder with prominent Tau protein deposits in the brainstem and hypothalamus. The aim of this study was to visualize the in vivo distribution patterns of Tau protein in patients with anti-IgLON5 disease using the second-generation Tau PET tracer, Florzolotau (18F) PET imaging.
Methods: Patients diagnosed with anti-IgLON5 disease were enrolled consecutively.
Dev Dyn
January 2025
Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain.
Invest Ophthalmol Vis Sci
January 2025
Department of Physics, Boise State University, Boise, Idaho, United States.
Purpose: To elucidate the mechanical properties of the bovine lens cortical membrane (CM), the nuclear membrane (NM) containing cholesterol bilayer domains (CBDs), and whole bovine lenses.
Methods: The total lipids (lipids plus cholesterol) from the cortex and nucleus of a single bovine lens were isolated using the monophasic methanol extraction method. Supported CMs and NMs were prepared from total lipids extracted from the cortex and nucleus, respectively, using a rapid solvent exchange method and probe-tip sonication, followed by the fusion of unilamellar vesicles on a flat, freshly cleaved mica surface.
J Alzheimers Dis
January 2025
Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.
Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!