Effect of Ca2+ on binding of the calpains to calpastatin.

J Biol Chem

Department of Animal Sciences, University of Arizona, Tucson 85721.

Published: October 1989

Autolyzed mu-calpain, unautolyzed mu-calpain, autolyzed m-calpain, and unautolyzed m-calpain (mu-calpain is the micromolar Ca2+-requiring proteinase, m-calpain is the millimolar Ca2+-requiring proteinase) were passed through a calpastatin-affinity column at different free Ca2+ concentrations, and binding of the calpains to calpastatin was compared with proteolytic activity of that calpain at each Ca2+ concentration. Unautolyzed m-calpain, autolyzed m-calpain, and autolyzed mu-calpain required less Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Unautolyzed mu-calpain, however, required slightly more Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Half-maximal binding of oxidatively inactivated mu- or m-calpain to calpastatin required approximately the same Ca2+ concentrations as half-maximal binding of unautolyzed mu- or m-calpain, respectively, to calpastatin. Binding of unautolyzed m-calpain and autolyzed mu-calpain to calpastatin occurred over a wide range of Ca2+ concentrations, and it seems likely that two or more Ca2+-binding sites with different Ca2+-binding constants are involved in binding of the calpains to calpastatin. Proteolytic activity occurs at different Ca2+ concentrations than calpastatin binding, suggesting a second set of Ca2+-binding sites associated with proteolytic activity. Third and fourth sets of Ca2+-binding sites may be involved in autolysis and in binding to phosphatidylinositol or cell membranes; these four Ca2+-dependent properties of the calpains may require the eight potential Ca2+-binding sites that amino acid sequences predict are present in the calpain molecules.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ca2+ concentrations
16
half-maximal binding
16
ca2+-binding sites
16
binding calpains
12
calpains calpastatin
12
autolyzed mu-calpain
12
unautolyzed m-calpain
12
proteolytic activity
12
m-calpain autolyzed
12
required ca2+
12

Similar Publications

Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.

View Article and Find Full Text PDF

The pollution index is a helpful tool for assessing the quality of groundwater. To assess the water quality in the southern segment of Barmer District (Rajasthan), India, we collected 20 samples of groundwater from the post-monsoon 2021 and pre-monsoon 2022 periods. Physicochemical parameters such as pH, electrical conductivity (EC), total hardness, Cl, SO, F, NO, total dissolved solids, Ca, and Mg were analyzed.

View Article and Find Full Text PDF

The regulatory mechanisms for beef tenderization by the calcium-independent phospholipase A activity of Peroxiredoxin 6.

Food Chem

January 2025

Lab of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China. Electronic address:

This study investigated the effect of the inhibition of the activity of Ca-independent Phospholipase A (iPLA) of Peroxiredoxin 6 (Prdx6) on beef tenderization in the early post-mortem period. Longissimus lumborum (LL) were incubated with or without the inhibitor of iPLA activity of Prdx6 (MJ33) for 1, 6, 12, 24, or 36 h, followed by incubation with or without the HO. iPLA activity, troponin T and desmin, Ca concentration, calpain-1, caspases, apoptosis rate, and cell morphology were examined.

View Article and Find Full Text PDF

Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.

View Article and Find Full Text PDF

Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!