A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition.

Waste Manag

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China. Electronic address:

Published: February 2015

A rapid and cost-effective prediction method based on wet physical composition has been developed to determine the lower heating value (LHV) of municipal solid waste (MSW) for practical applications in China. The heating values (HVs) of clean combustibles were measured in detail, and the effect of combustibles, food waste, and ash content on HV was studied to develop the model. The weighted average HV can be used to predict the MSW HV with high accuracy. Based on the moisture measurements of each major real combustible and the HV of clean solid waste, a predictive model of the LHV of real MSW was developed. To assess the prediction performance, information was collected on 103 MSW samples from 31 major cities in China from 1994 to 2012. Compared with five predictive models based on the wet physical composition from different regions in the world, the predictive result of the developed model is the most accurate. The prediction performance can be improved further if the MSW is sorted better and if more information is collected on the individual moisture contents of the waste.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2014.11.020DOI Listing

Publication Analysis

Top Keywords

solid waste
12
based wet
12
wet physical
12
physical composition
12
lower heating
8
municipal solid
8
prediction performance
8
waste
5
msw
5
simple method
4

Similar Publications

This study highlights an innovative approach to catalysis by utilizing natural asphalt as a support material for developing carbon-based catalysts. By leveraging the principles of green chemistry, the research aims to create recyclable and environmentally friendly heterogeneous catalytic systems. This aligns with the growing demand for greener technologies and the use of biocompatible materials in chemical processes.

View Article and Find Full Text PDF

Systematic characterization of faecal sludge from various sources for its use as a solid fuel.

Biomass Convers Biorefin

September 2023

Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, the Netherlands.

Faecal sludge (FS) is not extensively evaluated for its potential as a solid fuel mainly due to the general conception of its "highly variable characteristics" in relation to the wide range of on-site sanitation systems. An extensive and systematic FS characterization was therefore conducted on twenty-four samples collected directly from pit latrines, ventilated improved pit latrines (VIPs) and urine-diverting dehydrating toilets (UDDTs) at two depths to understand the impact on properties relevant for combustion. The higher heating value (HHV) for these samples lies between 13 to 22 MJ/kg DM (dry matter).

View Article and Find Full Text PDF

Sustainable extraction of phytoestrogens from soybean and okara using green solvents.

Food Res Int

February 2025

Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil. Electronic address:

Soy extract waste, okara, is a rich source of bioactive compounds such as isoflavones, which are phytoestrogens with potential health benefits. To develop a green approach to recovering these compounds and valorizing okara, a study was developed to screen variables for the extraction of isoflavones from okara and soybean (for comparison) using Deep Eutectic Solvents (DES) composed with choline chloride ([Ch]Cl) and acetic acid (AA) ([Ch]Cl: AA, 1:2). A fractional design (2) was used to evaluate variables in the extraction of isoflavones, followed by a Central Composite Rotatable Design (CCRD).

View Article and Find Full Text PDF

Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched.

View Article and Find Full Text PDF

Valorization of Cocoa and Peach-Palm Wastes for the Production of Amylases by Pleurotus pulmonarius CCB19 and Its Application as an Additive in Commercial Detergents.

Appl Biochem Biotechnol

January 2025

Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.

In the context of agribusiness, the agricultural and livestock sectors generate a considerable quantity of waste on a daily basis. Solid-state fermentation (SSF) represents a potential alternative for mitigating the adverse effects of residue accumulation and for producing high-value products such as enzymes. Pleurotus pulmonarius is capable of producing a number of commercial enzymes, including amylases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!