Background: Non-alcoholic fatty liver disease (NAFLD) is correlated with obesity, but specific therapeutic interventions are lacking. Adiponectin is an adipokine with anti-inflammatory activity and is considered a hepatic protector. We aimed to investigate effects of a low-fat diet on the hepatic expression of adiponectin and its receptors in rats with NAFLD.

Materials And Methods: Sixteen male SD rats were fed a high-fat diet for 8 weeks (HFD1 group) or 16 weeks (HFD2 group) to induce NAFLD, and these rats were compared with rats on a normal diet for 8 weeks (NC1 group) or 16 weeks (NC2 group). Another group of 8 rats was fed an HFD for 8 weeks and then switched to a low-fat diet (DIET group) until the 16th week. The expression of hepatic adiponectin and its receptors was detected by western blotting, immunohistochemistry and RT-qPCR.

Results: The NAFLD activity score (NAS) in the HFD groups increased from 3.2 ± 0.45 (8th week) to 6.2 ± 0.84 (16th week) (P < 0.001), reflecting the progression in the NAFLD histology. In contrast to the HFD2 group, the low-fat diet ameliorated the steatosis, ballooning degeneration and inflammation. Dietary intervention augmented the expression of adiponectin and its receptors, which was down-regulated in the HFD2 group.

Conclusions: The NAFLD rat model was successfully developed by feeding the animals a high-fat diet. Adiponectin may play a role in the pathogenesis of NAFLD, especially in the progression from steatosis to NASH. The low-fat diet alleviated the histological lesions associated with NAFLD by up-regulating the expression of adiponectin and its receptors.

Download full-text PDF

Source

Publication Analysis

Top Keywords

low-fat diet
20
adiponectin receptors
20
expression adiponectin
16
diet
9
effects low-fat
8
diet hepatic
8
hepatic expression
8
receptors rats
8
nafld
8
rats fed
8

Similar Publications

Background: Obesity and overweight are associated with low-grade inflammation induced by adipose tissue expansion and perpetuated by altered intestinal homeostasis, including increased epithelial permeability. Intestinal epithelium functions are supported by intestinal epithelial cells (IEC) mitochondria function.

Methods And Results: Here, we report that diet-induced obesity (DIO) in mice induces lipid metabolism adaptations favoring lipid storage in IEC together with reduced number, altered dynamics and diminished oxidative phosphorylation activity of IEC mitochondria.

View Article and Find Full Text PDF

Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.

View Article and Find Full Text PDF

Hypercholesterolemia is a risk factor of coronary heart disease and cholesterol-lowering probiotics are seen as alternative to drugs for the management of this condition. In the present study, we evaluated the cholesterol-lowering activity of KS6I1 in high-cholesterol diet-induced hypercholesterolemic mice. The mice were fed with high-cholesterol diet (HCD) and were divided into three groups: HCD group, KS6I1 group (fed with HCD + 200 μl of 10 CFU/ml KS6I1), and L.

View Article and Find Full Text PDF

Purpose: To examine sex-based differences in substrate oxidation, postprandial metabolism, and performance in response to 24-hour manipulations in energy availability (EA), induced by manipulations to energy intake (EI) or exercise energy expenditure (EEE).

Methods: In a Latin Square design, 20 endurance athletes (10 females using monophasic oral contraceptives and 10 males) undertook five trials, each comprising three consecutive days. Day one was a standardized period of high EA; EA was then manipulated on day two; post-intervention testing occurred on day three.

View Article and Find Full Text PDF

Zearalenone exacerbates lipid metabolism disorders by promoting liver lipid droplet formation and disrupting gut microbiota.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety),Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China. Electronic address:

Zearalenone (ZEA), produced by Fusarium, is a fungal toxin commonly found in maize, wheat, and other cereals. ZEA has the ability to bind to estrogen receptors of humans and animals and is an environmental endocrine disruptor that may interfere with glucose homeostasis and lipid metabolism. In this study, we first investigated the effects of chronic exposure to low doses of ZEA with a high-fat-diet (HFD) in obese C57BL/6 J mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!