Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans.

PLoS One

Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China.

Published: December 2015

Caenorhabditis elegans is a useful model to study the neuronal or molecular basis for behavioral choice, a specific form of decision-making. Although it has been implied that both D1-like and D2-like dopamine receptors may contribute to the control of decision-making in mammals, the genetic interactions between D1-like and D2-like dopamine receptors in regulating decision-making are still largely unclear. In the present study, we investigated the molecular control of behavioral choice between conflicting alternatives (diacetyl and Cu2+) by D1-like and D2-like dopamine receptors and their possible genetic interactions with C. elegans as the assay system. In the behavioral choice assay system, mutation of dop-1 gene encoding D1-like dopamine receptor resulted in the enhanced tendency to cross the Cu2+ barrier compared with wild-type. In contrast, mutations of dop-2 or dop-3 gene encoding D2-like dopamine receptor caused the weak tendency to cross the Cu2+ barrier compared with wild-type. During the control of behavioral choice, DOP-3 antagonistically regulated the function of DOP-1. The behavioral choice phenotype of dop-2; dop-1dop-3 triple mutant further confirmed the possible antagonistic function of D2-like dopamine receptor on D1-like dopamine receptor in regulating behavioral choice. The genetic assays further demonstrate that DOP-3 might act through Gαo signaling pathway encoded by GOA-1 and EGL-10, and DOP-1 might act through Gαq signaling pathway encoded by EGL-30 and EAT-16 to regulate the behavioral choice. DOP-1 might function in cholinergic neurons to regulate the behavioral choice, whereas DOP-3 might function in GABAergic neurons, RIC, and SIA neurons to regulate the behavioral choice. In this study, we provide the genetic evidence to indicate the antagonistic relationship between D1-like dopamine receptor and D2-like dopamine receptor in regulating the decision-making of animals. Our data will be useful for understanding the complex functions of dopamine receptors in regulating decision-making in animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275273PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115985PLOS

Publication Analysis

Top Keywords

behavioral choice
40
d2-like dopamine
24
dopamine receptor
24
dopamine receptors
20
regulate behavioral
16
d1-like d2-like
12
regulating decision-making
12
d1-like dopamine
12
dopamine
11
behavioral
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!