The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the scenes, demonstrating a key role for the ATN in human memory encoding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302268PMC
http://dx.doi.org/10.7554/eLife.05352DOI Listing

Publication Analysis

Top Keywords

phase synchrony
8
cross-frequency coupling
8
human memory
8
memory formation
8
role atn
8
memory encoding
8
memory
5
corticothalamic phase
4
synchrony cross-frequency
4
coupling predict
4

Similar Publications

Objectives: Cervical vestibular evoked myogenic potentials (cVEMPs) reflect saccular stimulation that results in an inhibitory muscle reflex recorded over the sternocleidomastoid muscle. These responses are utilized to study basic vestibular functions and are also applied clinically. Traditionally, cVEMPs have utilized transient stimuli such as clicks and tonebursts to evoke onset responses.

View Article and Find Full Text PDF

A framework for optimal control of oscillations and synchrony applied to non-linear models of neural population dynamics.

Front Comput Neurosci

December 2024

Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin, Germany.

We adapt non-linear optimal control theory (OCT) to control oscillations and network synchrony and apply it to models of neural population dynamics. OCT is a mathematical framework to compute an efficient stimulation for dynamical systems. In its standard formulation, it requires a well-defined reference trajectory as target state.

View Article and Find Full Text PDF

Rapid adaptation to novel environments is crucial for survival, and this ability is impaired in many neuropsychiatric disorders. Understanding neural adaptation to novelty exposure therefore has therapeutic implications. Here, I found that novelty induces time-dependent theta (4-12Hz) oscillatory dynamics in brain circuits including the medial prefrontal cortex (mPFC), ventral hippocampus (vHPC), and ventral tegmental area (VTA), but not dorsal hippocampus (dHPC), as mice adapt to a novel environment.

View Article and Find Full Text PDF

Persistent motor deficits are highly prevalent among post-stroke survivors, contributing significantly to disability. Despite the prevalence of these deficits, the precise mechanisms underlying motor recovery after stroke remain largely elusive. The exploration of motor system reorganization using functional neuroimaging techniques represents a compelling yet challenging avenue of research.

View Article and Find Full Text PDF

Having a depressed first-degree relative is one of the most replicated risk factors for depression. Research on the familial transmission of depression, however, has largely ignored siblings, even though sibling relationships are commonplace and characterized by frequent and intense emotions. It has been suggested that frequent contacts in close relationships lead to similarities in emotions and cognitions over time, a process underpinned by biobehavioral synchrony.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!