Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and -70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and -70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275305 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114838 | PLOS |
Alzheimers Dement
December 2024
Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
Background: Glaucoma is characterized by progressive optic nerve degeneration that results in irreversible blindness, and it can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence suggest that glaucoma shares some common neurodegenerative pathways with Frontotemporal Lobar Degeneration (FTLD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD) among others. Interestingly, a recent study revealed the presence of abnormal TAR DNA-binding protein 43 (TDP-43) inclusions and aggregates in retinal ganglion cells and other retinal cell types in FTLD-TDP patients; however, the significance of this pathology and its impact on retinal function and optical nerve integrity is unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
Background: Dementia is age-related with a significant genetic contribution, yet genome-wide association studies have not fully accounted for heritability. This discrepancy may in part be due to reliance on SNPs and small indels. Whole-genome sequencing (WGS) data in the Japanese population may reveal population-specific susceptibility loci for dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Background: Alzheimer's disease (AD) is the foremost cause of global dementia, also characterized by retinal changes involving Aβ, hyperphosphorylated-tau (p-tau), neuronal degeneration, and tissue atrophy. Mitochondrial-driven reactive oxygen species (ROS) production, linked to synaptic dysfunction, is common to various neurodegenerative conditions, including AD. Despite synaptic dysfunction being an early predictor of cognitive decline in AD, its occurrence in the AD retina is unexplored.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Southern California, San Diego, CA, USA.
Background: Individuals with Down Syndrome (DS) exhibit a unique aging profile and have early-onset Alzheimer's Disease (AD) due to a triplication of the amyloid precursor protein (APP) gene on chromosome 21.
Method: Here, we present a study of a 73-year-old non-Hispanic White female with DS who underwent extensive clinical assessments for several decades. She had a cognitive and functional impairment consistent with DS and AD-like symptoms.
Brain Commun
December 2024
Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, Singapore 169856, Singapore.
Accurate and early diagnosis of Alzheimer's disease and vascular dementia is crucial for enabling timely interventions and improving patient outcomes. This study evaluates the diagnostic performance of plasma biomarkers (neurofilament light chain and phosphorylated tau181) and retinal biomarkers (retinal nerve fibre layer and ganglion cell-inner plexiform layer), individually and in combination, in differentiating moderate cognitive impairment and dementia from mild cognitive impairment and no cognitive impairment. A cross-sectional study was conducted involving 509 participants, aged 50 and older, recruited from a memory clinic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!