Objective: A number of studies have shown the role of expanded Bone Marrow-derived Mesenchymal Stem Cells in the repair and regeneration of musculo-skeletal tissues. The current European regulations define in vitro expanded cells for clinical purposes as substantially manipulated and include them in the class of Advanced-Therapy Medicinal Products to be manufactured in compliance with current Good Manufacturing Practice. Among the characteristics that such cells should display, genomic stability has recently become a major safety concern. The aim of this study is to perform a chromosomal and genetic characterization of Bone Marrow-derived Mesenchymal Stem Cells expanded in compliance with Good Manufacturing Practice for a potential clinical use in orthopaedics.
Materials And Methods: Mesenchymal Stem Cells, isolated from bone marrow, were expanded for six weeks in compliance with current Good Manufacturing Practice. DNA profiling analyses were applied to test cross-contamination absence. Genomic stability was evaluated by means of karyotyping, sequencing of TP53, p21/CDKN1A and MDM2 genes and the expression analysis of c-MYC and H-RAS oncogenes, p21/CDKN1A, TP53, p16/CDKN2A, RB1 and p27/CDKN1B tumor suppressor genes and hTERT gene.
Results: The DNA profiling analysis showed a unique genetic profile for each Mesenchymal Stem Cell culture, indicating the absence of cross-contamination. Karyotyping evidentiated some chromosomal abnormalities within the 10% limit set by the Cell Products Working Party review, except for one patient. In all cases, the molecular biology analyses did not revealed DNA point mutations, acquisition or changes in gene expression. hTERT levels were undetectable.
Conclusions: Cultured Mesenchymal Stem Cells do not seem to be prone to malignant transformation. In fact, although some chromosomal aberrations were found, molecular biology analyses demonstrated that the expansion phase did not induce the acquisition of de novo genetic changes.
Download full-text PDF |
Source |
---|
Front Bioeng Biotechnol
January 2025
Department of Sports Medicine, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine (FJTCM), Fuzhou, China.
Humerus greater tuberosity (HGT) avulsion fracture is one of the most common types of proximal humerus fractures. The presence of motion and gap lead to the failure of implants, due to the force pulling from the supraspinatus. In this work, electrospinning technology was applied to fabricate PCL-PEG/CS/AST nanofiber with superior biocompatibility and mechanical property.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China.
Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
Peripheral nerve injury (PNI) is a common disease that is difficult to nerve regeneration with current therapies. Fortunately, Zou demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells (BMSCs) in promoting nerve regeneration, revealing broad prospects for BMSCs transplantation in alleviating PNI. We confirmed the fact that BMSCs significantly alleviate PNI, but there are shortcomings such as low cell survival rate and immune rejection, which limit the wide application of BMSCs.
View Article and Find Full Text PDFPulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome (ARDS), markedly increasing patient mortality. Despite the established anti-fibrotic effects of mesenchymal stem cells (MSCs), numerous challenges hinder their clinical application. A recent study demonstrated that microvesicles (MVs) from MSCs (MSC-MVs) could attenuate ARDS-related pulmonary fibrosis and enhance lung function hepatocyte growth factor mRNA transcription.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea.
Background: Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture.
Aim: To enhance the efficiency and therapeutic efficacy of MSCs, an -like 3D culture condition was applied.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!