Epigenetic marks such as DNA methylation play important biological roles in gene expression regulation and cellular differentiation during development. To examine whether DNA methylation patterns are potentially associated with naturally occurring phenotypic differences, we examined genome-wide DNA methylation within Gasterosteus aculeatus, using reduced representation bisulfite sequencing. First, we identified highly methylated regions of the stickleback genome, finding such regions to be located predominantly within genes, and associated with genes functioning in metabolism and biosynthetic processes, cell adhesion, signaling pathways, and blood vessel development. Next, we identified putative differentially methylated regions (DMRs) of the genome between complete and low lateral plate morphs of G. aculeatus. We detected 77 DMRs that were mainly located in intergenic regions. Annotations of genes associated with these DMRs revealed potential functions in a number of known divergent adaptive phenotypes between G. aculeatus ecotypes, including cardiovascular development, growth, and neuromuscular development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molbev/msu344 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!