Molecular chirality is introduced at liquid-solid interfaces. A ring-like aggregation of amyloid Aβ(1-40) on N-isobutyryl-L-cysteine (L-NIBC)-modified gold substrate occurs at low Aβ(1-40) concentration, while D-NIBC modification only results in rod-like aggregation. Utilizing atomic force microscope controlled tip-enhanced Raman scattering, we directly observe the secondary structure information for Aβ(1-40) assembly in situ at the nanoscale. D- or L-NIBC on the surface can guide parallel or nonparallel alignment of β-hairpins through a two-step process based on electrostatic-interaction-enhanced adsorption and subsequent stereoselective recognition. Possible electrostatic interaction sites (R5 and K16) and a chiral recognition site (H14) of Aβ(1-40) are proposed, which may provide insight into the understanding of this effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201410768 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!