Amyloid-β peptides generated by proteolysis of the β-amyloid precursor protein (APP) play an important role in the pathogenesis of Alzheimer's disease. The present study aimed to determine whether cytosolic phospholipase A2 α (cPLA2 α) plays a role in elevated APP protein expression induced by aggregated amyloid-β1-42 (Aβ) in cortical neurons and to elucidate its specific role in signal events leading to APP induction. Elevated cPLA2 α and its activity determined by phosphorylation on serine 505 as well as elevated APP protein expression, were detected in primary rat cortical neuronal cultures exposed to Aβ for 24 h and in cortical neuron of human amyloid-β1-42 brain infused mice. Prevention of cPLA2 α up-regulation and its activity by oligonucleotide antisense against cPLA2 α (AS) prevented the elevation of APP protein in cortical neuronal cultures and in mouse neuronal cortex. To determine the role of cPLA2 α in the signals leading to APP induction, increased cPLA2 α expression and activity induced by Aβ was prevented by means of AS in neuronal cortical cultures. Under these conditions, the elevated cyclooxygenase-2 and the production of prostaglandin E2 (PGE2 ) were prevented. Addition of PGE2 or cyclic AMP analogue (dbcAMP) to neuronal cultures significantly increased the expression of APP protein, while the presence protein kinase A inhibitor (H-89) attenuated the elevation of APP induced by Aβ. Inhibition of elevated cPLA2 α by AS prevented the activation of cAMP response element binding protein (CREB) as detected by its phosphorylated form, its translocation to the nucleus and its DNA binding induced by Aβ which coincided with cPLA2 α dependent activation of CREB in the cortex of Aβ brain infused mice. Our results show that accumulation of Aβ induced elevation of APP protein expression mediated by cPLA2 α, PGE2 release, and CREB activation via protein kinase A pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.13012 | DOI Listing |
Int J Legal Med
January 2025
Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FIN-00271, Finland.
In July 2023, an in-house forensic neuropathology consultation pilot was established at the Helsinki office of the Forensic Medicine Unit, Finnish Institute for Health and Welfare. This offered an alternative to the previous practice of full outsourcing to a hospital neuropathology department. This paper aims to introduce the first year experiences of the pilot.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan. Electronic address:
Plasma amyloid-β (Aβ) markers are significant predictors of Aβ pathology. However, their prognostic value for cognition in patients with Alzheimer's disease (AD) is unknown. We compared plasma amyloid-β precursor protein (APP) and Aβ levels between cognitively unimpaired participants (CU) and those with MCI due to AD and AD dementia.
View Article and Find Full Text PDFNutrients
December 2024
School of Health Sciences, University of Ioannina, St. Niarchou Av, 45500 Ioannina, Greece.
Unlabelled: Introduction-Aim: Adopting a lifestyle that incorporates regular physical activity confers substantial benefits to both physical and mental health and is recommended for prediabetic individuals. The aim of this study is to investigate the impact of activity tracking apps on increasing physical activity and its effect on glycemic control in people with prediabetes.
Materials And Methods: This pilot study included 37 participants, 18 in the prediabetic group and 19 in the normoglycemic group matched for age and gender (mean age 53 years, 40% males).
Foods
January 2025
Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea.
Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.
View Article and Find Full Text PDFFoods
January 2025
School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China.
Alzheimer's disease (AD) is marked by impaired cognitive functions, particularly in learning and memory, owing to complex and diverse mechanisms. Methionine restriction (MR) has been found to exert a mitigating effect on brain oxidative stress to improve AD. However, the bidirectional crosstalk between the gut and brain through which MR enhances learning and memory in AD, as well as the effects of fecal microbiota transplantation (FMT) from MR mice on AD mice, remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!