Artemisia montana Pampan (Compositae) (AMP) contains various compounds, including phenolic acids, alkaloids, and essential oil. It has been widely used in oriental medicine due to a variety of biological effects. However, the biological activity of the essential oil from AMP (AMPEO) on skin has not been investigated. In the present study, AMPEO was evaluated for its composition and its effect on cellular events (migration and proliferation) related to skin regeneration using normal human keratinocytes (HaCats). AMPEO, which was extracted by steam distillation, contained 42 components. AMPEO increased proliferation in HaCats in a dose-dependent manner (EC 50, 8.5 ng/mL) and did not affect migration. AMPEO also enhanced the phosphorylation of Akt and ERK 1/2 and induced the synthesis of type IV collagen, but not type I collagen in HaCats. In addition, AMPEO promoted wound closure in the dorsal side skin of rat tail. These results demonstrated that AMPEO extracted by steam distillation induced proliferation and synthesis of type IV collagen in human skin keratinocytes, and may thereby exert positive effects on skin regeneration and wound healing in human skin.

Download full-text PDF

Source

Publication Analysis

Top Keywords

skin regeneration
12
essential oil
12
type collagen
12
artemisia montana
8
ampeo extracted
8
extracted steam
8
steam distillation
8
synthesis type
8
human skin
8
skin
7

Similar Publications

Tissue selective ultrasonic debridement is a new method of debriding chronic wounds that prepares the wound for advanced tissue application. This article presents the case of an 89-year-old woman with a chronic nonhealing wound to her lateral distal leg. The wound had a significant amount of biofilm and fibrous slough.

View Article and Find Full Text PDF

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

Introduction: Bacterial infection, a complex wound microenvironment, and a persistent inflammatory response in acute wounds can result in delayed healing and abnormal scar formation, thereby compromising the normal function and aesthetic appearance of skin tissue. This issue represents one of the most challenging problems in clinical practice. This study aims to develop a hydrogel dressing specifically designed for the treatment of acute wounds, providing immediate and effective protection for the affected areas.

View Article and Find Full Text PDF

Purpose: Gastrostomy is the commonly used enteral feeding technology. The clinical risks caused by tube dislodgement and peristomal site infection are the common complications before complete tract maturation after gastrostomy. However, there is currently no relevant research to promote gastrostomy wound treatment and tract maturation.

View Article and Find Full Text PDF

The integration of hydrogen-bonded organic frameworks (HOFs) with flexible electronic technologies offers a promising strategy for monitoring detailed health information, owing to their inherent porosity, excellent biocompatibility, and tunable catalytic capabilities. However, their application in wearable and real-time health monitoring remains largely unexplored, primarily due to the mechanical mismatch between the traditionally fragile HOFs particles and the softness of human skin. Herein, this study demonstrates an epidermal biosensor that maintains reliable sensing capability even under extreme deformation and complex environmental conditions by integrating HOFs films with wavy bioelectrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!