Eliminating degradation in solid oxide electrochemical cells by reversible operation.

Nat Mater

Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.

Published: February 2015

One promising energy storage technology is the solid oxide electrochemical cell (SOC), which can both store electricity as chemical fuels (electrolysis mode) and convert fuels to electricity (fuel-cell mode). The widespread use of SOCs has been hindered by insufficient long-term stability, in particular at high current densities. Here we demonstrate that severe electrolysis-induced degradation, which was previously believed to be irreversible, can be completely eliminated by reversibly cycling between electrolysis and fuel-cell modes, similar to a rechargeable battery. Performing steam electrolysis continuously at high current density (1 A cm(-2)), initially at 1.33 V (97% energy efficiency), led to severe microstructure deterioration near the oxygen-electrode/electrolyte interface and a corresponding large increase in ohmic resistance. After 4,000 h of reversible cycling, however, no microstructural damage was observed and the ohmic resistance even slightly improved. The results demonstrate the viability of applying SOCs for renewable electricity storage at previously unattainable reaction rates, and have implications for our fundamental understanding of degradation mechanisms that are usually assumed to be irreversible.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat4165DOI Listing

Publication Analysis

Top Keywords

solid oxide
8
oxide electrochemical
8
high current
8
ohmic resistance
8
eliminating degradation
4
degradation solid
4
electrochemical cells
4
cells reversible
4
reversible operation
4
operation promising
4

Similar Publications

Improving the Electrochemical Properties of SiO Anode for High-Performance Lithium-Ion Batteries by Magnesiothermic Reduction and Prelithiation.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

For lithium-ion batteries, silicon monoxide is a potential anode material, but its application is limited by its relatively large irreversible capacity loss, which leads to its low initial Coulombic efficiency (ICE). In this study, we conduct a two-step reaction for the formation of silicon oxide-based materials, including a magnesiothermic reduction of SiO with Mg, followed by the solid-state lithiation of silicon oxide with LiCO. Our results demonstrate that Mg can reduce SiO to Si and form MgSiO, while LiCO reacts with SiO to form LiSiO.

View Article and Find Full Text PDF

Blue Electroluminescent Carbon Dots Derived from Victorian Lignite.

ACS Omega

January 2025

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.

View Article and Find Full Text PDF

The redox aspects of lithium-ion batteries.

Energy Environ Sci

December 2024

Institute of Chemical Science and Engineering, Station 6, Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne Switzerland

This article aims to present the redox aspects of lithium-ion batteries both from a thermodynamic and from a conductivity viewpoint. We first recall the basic definitions of the electrochemical potential of the electron, and of the Fermi level for a redox couple in solutions. The Fermi level of redox solids such as metal oxide particles is then discussed, and a Nernst equation is derived for two ideal systems, namely an ideally homogenous phase where the oxidised and reduced metal ions are homogeneously distributed and two segregated phases where the oxidised and the reduced metal ions are separated in two distinct phases such as observed, for example, in biphasic lithium iron phosphate.

View Article and Find Full Text PDF

Enzyme-instructed self-assembly (EISA) is a promising approach to anti-cancer therapeutics due to its precise targeting and unique cell death mechanism. In this study, we introduce a small molecule, DN6, which undergoes nitroreductase (NTR)-responsive liquid-liquid phase separation (LLPS) followed by a liquid-to-solid phase transition (LST) through a gel-like intermediate state, resulting in the formation of nanoaggregates with spatiotemporal control. The reduced form of DN6 (DN6R), owing to its aggregation-induced emission (AIE) and mitochondria-targeting capabilities, has been employed for organelle-specific imaging of tumor hypoxia.

View Article and Find Full Text PDF

The beneficial effects of priming technology are aimed at the promotion of growth and development and stress tolerance in plants. Different seed pre-treatment and vegetative priming approaches (osmo-, chemical, physical, hormonal, redox treatments) increase the level of nitric oxide (NO) being an active contributor to growth regulation and defence responses. On the other hand, seed pre-treatment or vegetative priming mainly with the NO donor, sodium nitroprusside (SNP) helps to mitigate different abiotic stresses like salinity, cold, drought, excess metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!