To determine chemical-protein interactions (CPI) is costly, time-consuming, and labor-intensive. In silico prediction of CPI can facilitate the target identification and drug discovery. Although many in silico target prediction tools have been developed, few of them could predict active molecules against multitarget for a single disease. In this investigation, naive Bayesian (NB) and recursive partitioning (RP) algorithms were applied to construct classifiers for predicting the active molecules against 25 key targets toward Alzheimer's disease (AD) using the multitarget-quantitative structure-activity relationships (mt-QSAR) method. Each molecule was initially represented with two kinds of fingerprint descriptors (ECFP6 and MACCS). One hundred classifiers were constructed, and their performance was evaluated and verified with internally 5-fold cross-validation and external test set validation. The range of the area under the receiver operating characteristic curve (ROC) for the test sets was from 0.741 to 1.0, with an average of 0.965. In addition, the important fragments for multitarget against AD given by NB classifiers were also analyzed. Finally, the validated models were employed to systematically predict the potential targets for six approved anti-AD drugs and 19 known active compounds related to AD. The prediction results were confirmed by reported bioactivity data and our in vitro experimental validation, resulting in several multitarget-directed ligands (MTDLs) against AD, including seven acetylcholinesterase (AChE) inhibitors ranging from 0.442 to 72.26 μM and four histamine receptor 3 (H3R) antagonists ranging from 0.308 to 58.6 μM. To be exciting, the best MTDL DL0410 was identified as an dual cholinesterase inhibitor with IC50 values of 0.442 μM (AChE) and 3.57 μM (BuChE) as well as a H3R antagonist with an IC50 of 0.308 μM. This investigation is the first report using mt-QASR approach to predict chemical-protein interaction for a single disease and discovering highly potent MTDLs. This protocol may be useful for in silico multitarget prediction of other diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci500574nDOI Listing

Publication Analysis

Top Keywords

multitarget-directed ligands
8
alzheimer's disease
8
chemical-protein interactions
8
active molecules
8
single disease
8
prediction
5
μm
5
discovery multitarget-directed
4
ligands alzheimer's
4
disease
4

Similar Publications

Autism spectrum disorder is a complex neurodevelopmental disorder. The available medical treatment options for autism spectrum disorder are very limited. While the etiology and pathophysiology of autism spectrum disorder are still not fully understood, recent studies have suggested that wide alterations in the GABAergic, glutamatergic, cholinergic, and serotonergic systems play a key role in its development and progression.

View Article and Find Full Text PDF
Article Synopsis
  • * A small library of dual modulators was created using 2-phenylindole structures, showing effectiveness in binding to TSPO and activating CA VII.
  • * One promising compound demonstrated no cytotoxicity, stimulated TSPO function, activated CA VII, and increased expression of brain-derived neurotrophic factor, highlighting its potential for further development.
View Article and Find Full Text PDF

Cannabidiolic (CBDA) and cannabigerolic (CBGA) acids are naturally occurring compounds from Cannabis sativa plant, previously identified by us as dual PPARα/γ agonists. Since the development of multitarget-directed ligands (MTDL) represents a valuable strategy to alleviate and slow down the progression of multifactorial diseases, we evaluated the potential ability of CBDA and CBGA to also inhibit enzymes involved in the modulation of the cholinergic tone and/or β-amyloid production. A multidisciplinary approach based on computational and biochemical studies was pursued on selected enzymes, followed by behavioral and electrophysiological experiments in an AD mouse model.

View Article and Find Full Text PDF

Alterations in the actin cytoskeleton correlates to tumor progression and affect critical cellular processes such as adhesion, migration and invasion. Rho-associated coiled-coil-containing protein kinases (ROCK1 and ROCK2), important regulators of the actin cytoskeleton, are frequently overexpressed in various malignancies. The aim of this study was therefore to identify the key structural features of ROCK1/ROCK2 inhibitors using computer-aided drug design (CADD) approaches.

View Article and Find Full Text PDF

Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis.

Mol Neurobiol

October 2024

Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.

Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!