In non-coordinating solvents, borane was shown to be an efficient directing group for the stereoselective 1,2-addition of organolithium reagents to P-stereogenic N-phosphanylimines. Selectivity was reversed in coordinating solvents. This process can lead to novel ligand scaffolds for asymmetric catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc09106jDOI Listing

Publication Analysis

Top Keywords

borane efficient
8
efficient directing
8
directing group
8
group stereoselective
8
stereoselective 12-addition
8
p-stereogenic n-phosphanylimines
8
12-addition organometallic
4
organometallic reagents
4
reagents borane
4
borane p-stereogenic
4

Similar Publications

We report the rapid synthesis of primary amides by directly using commercially available ammonia borane (NH·BH), sodium hexamethyldisilazide (NaHMDS), and esters. The success of this protocol relies on NH·BH as the nitrogen source being considerably more convenient and NaHMDS being an excellent proton abstractor but not participating in the nucleophilic addition reaction. The reaction had a wide substrate scope containing bioactive molecules, and most of the substrates were efficiently amidated over 90% yields.

View Article and Find Full Text PDF

The present study details the synthesis and characterization of a robust, monomeric Al-H aluminate supported by a tridentate -phenolate ligand, isolated as [][Li(THF)] and [][N(Bu)] salts, which were then exploited as CO hydroboration catalysts. As initial reactivity studies, it was observed that the nucleophilic Al-H anion in [][C] (C = countercation [Li(THF)] or [N(Bu)]) reacts fast with CO, to afford the corresponding Al-formate complexes [][C], which were isolated and structurally characterized. Such anions were then exploited as potential CO reduction catalysts.

View Article and Find Full Text PDF

Photocatalytic Direct Borylation of Benzothiazole Heterocycles via a Triplet Activation Strategy.

Org Lett

January 2025

Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.

Boron compounds are widely employed in organic chemistry, pharmaceuticals, and materials science. Among them, borylated heterocycles serve as versatile synthons for the construction of new C-C or C-heteroatom bonds via coupling or radical processes. Such methods for direct C-H borylation reactions are of high synthetic value to reduce the number of synthetic steps and the amount of waste and to improve efficiency.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) materials with high photoluminescence quantum yields and a fast reverse intersystem crossing (RISC) are of the highest interest for organic light-emitting diodes (OLEDs). In the past decade, triaryl boranes with multiple resonance effect (MR) have captured significant attention. The efficiency of MR-TADF emitters strongly depends on small singlet-triplet energy gaps (ΔE), but also on large reverse intersystem crossing (RISC) rate constants (k).

View Article and Find Full Text PDF

Anion modulation enhances the internal electric field of CuCoO to improve the catalysis in ammonia borane hydrolysis.

J Colloid Interface Sci

April 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:

Ammonia borane (NHBH, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCoO, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!