The effect of the metal precursor (presence or absence of chlorine) on the preferential oxidation of CO in the presence of H2 over Pt/CeO2 catalysts has been studied. The catalysts are prepared using (Pt(NH3)4)(NO3)2 and H2PtCl6, as precursors, in order to ascertain the effect of the chlorine species on the chemical properties of the support and on the catalytic behavior of these systems in the PROX reaction. The results show that chloride species exert an important effect on the redox properties of the oxide support due to surface chlorination. Consequently, the chlorinated catalyst exhibits a poorer catalytic activity at low temperatures compared with the chlorine-free catalyst, and this is accompanied by a higher selectivity to CO2 even at high reaction temperatures. It is proposed that the CO oxidation mechanism follows different pathways on each catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2014.12.013 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
Pyridinium salts are amine surrogates that are abundant in nature and the redox active nature of the pyridinium salts allows them to serve as precursors for generating radical species under mild conditions that can be initiated by light, heat or metal catalysis. The stereoselective formation of products has always been a topic of interest for synthetic chemists worldwide. In this context, pyridinium salts can readily undergo single electron reduction to form a neutral radical, and the N-X bond's subsequent fragmentation furnishes the X radical without any harsh reaction conditions.
View Article and Find Full Text PDFACS Nano
January 2025
DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
Elucidating the structural dynamics of ligand-stabilized noble metal nanoclusters (NCs) is critical for understanding their properties and for developing applications. Ligand rearrangement at NC surfaces is an important contributor to structural change. In this study, we investigate the dynamic behavior of ligand-protected [Ag(L)] NC's (L = 1,3-benzenedithiol) interacting with secondary ligand 2,2'-[1,4-phenylenebis (methylidynenitrilo)] bis[benzenethiol] (referred to as ).
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
Covalent organic frameworks (COFs) are crystalline porous materials bearing well-ordered two- or three-dimensional molecular tectons in their polymeric skeletal framework. COFs are structurally robust as well as physiochemically stable. Currently, these are being developed for their use as "heterogeneous catalysts" for various organic transformations.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
To solve the energy crisis and environmental issues, it is essential to create effective and sustainable energy conversion and storage technologies. Traditional materials for energy conversion and storage however have several drawbacks, such as poor energy density and inadequate efficiency. The advantages of MOF-based materials, such as pristine MOFs, also known as porous coordination polymers, MOF composites, and their derivatives, over traditional materials, have been thoroughly investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!