Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/cr500410y | DOI Listing |
Chem Sci
January 2025
Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Organic and Analytical Chemistry (ICOA UMR 7311), CNRS, University of Orleans, F-45067 Orléans, France.
The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
The chemical recycling of polystyrene (PS) waste to value-added aromatic compounds is an attractive but formidable challenge due to the inertness of the C-C bonds in the polymer backbone. Here we develop a light-driven, copper-catalyzed protocol to achieve aerobic oxidation of various alkylarenes or real-life PS waste to benzoic acid and oxidized styrene oligomers. The resulting oligomers can be further transformed under heating conditions, thus achieving benzoic acid in up to 65% total yield through an integrated one-pot two-step procedure.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, New York University, New York, New York 10003, United States.
Complexity-generating reactions that access three-dimensional products from simple starting materials offer substantial value for drug discovery. While oxygen-containing heterocycles frequently feature unique, nonaromatic architectures such as spirocyclic rings, exploration of these chemical spaces is limited by conventional synthetic approaches. Herein, we report a copper-catalyzed annulation and alkene transposition cascade reaction that enables a modular preparation of complex, spirocyclic ethers from readily available alkenol substrates via a copper-catalyzed annulation and transannular 1,5-hydrogen atom transfer-mediated C-H functionalization.
View Article and Find Full Text PDFJ Org Chem
December 2024
Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain.
Functionalized tetra--methoxyazobenzenes have been prepared in a two-step approach based on palladium-catalyzed C-H bromination of azobenzenes, followed by copper-catalyzed methoxylation. The method has shown a broad tolerance to different functional groups that could not be incorporated by previous strategies. With this two-step transition metal-catalyzed strategy, we achieved overall yields that range from good to excellent and enable the exploitation of these highly coveted photoswitches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!