The extent to which reliable electrons per atom ratio, e/a, are determined and the validity of the Hume-Rothery stabilization mechanism are ensured upon increasing ionicity are studied by applying first-principles full potential linearized augmented plane wave (FLAPW)-Fourier band calculations to as many as 59 binary compounds formed by adding elements from periods 2-6 to phosphorus in group 15 of the Periodic Table. Van Arkel-Ketelaar triangle maps were constructed both by using the Allen electronegativity data and by using an energy difference between the center-of-gravity energies of FLAPW-derived s and p partial densities of states (DOSs) for the equiatomic compounds studied. The determination of e/a and the test of the interference condition, both of which play a key role in the Hume-Rothery stabilization mechanism, were reliably made for all intermetallic compounds, as long as the ionicity is less than 50%. In the A-P (A = Li, Na, K, Rb, and Cs) compounds with ionicity exceeding 50%, however, e/a determination becomes unstable, as reflected in its P concentration dependence. New Hume-Rothery electron concentration rules were theoretically found in two families of polar compounds: skutterudite compounds TMP(3), TMAs(3), and TMSb(3) (TM = Co, Ni, Rh, and Ir; cI32) with e/a = 4.34 and TM(3)P (TM = Cr, Mn, Fe, and Ni; tI32) with e/a = 2.20.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic502286q | DOI Listing |
Small
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.
View Article and Find Full Text PDFSmall Methods
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.
Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Technology Delhi, Department of Chemistry, Hauz Khas, 110016, New Delhi, INDIA.
A mononuclear CoIII complex (1) of a bisamide-bisalkoxide donor ligand was synthesized and thoroughly characterized. The reaction of 1 with 0.5 equiv.
View Article and Find Full Text PDFCrystals (Basel)
January 2018
National Institute of Standards and Technology (NIST), Boulder, CO 80305, USA.
While GaN nanowires (NWs) offer an attractive architecture for a variety of nanoscale optical, electronic, and mechanical devices, defects such as crystal polarity inversion domains (IDs) can limit device performance. Moreover, the formation of such defects during NW growth is not fully understood. In this study, we use transmission electron microscopy (TEM) and atom probe tomography (APT) to investigate the effects of sub-monolayer contamination at the regrowth interface in GaN NWs grown by selective-area molecular beam epitaxy (MBE).
View Article and Find Full Text PDFACS Nano
January 2025
IBM Almaden Research Center, San Jose 95120-6099, California, United States.
Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!