Objective: The study was to investigate the impact of orthotropic material on the biomechanics of dental implant, based on a detailed mandible with high geometric and mechanical similarity.
Materials And Methods: Multiple data sources were used to elaborate detailed biological structures and implant CAD models. In addition, an extended orthotropic material assignment methodology based on harmonic fields was used to handle the alveolar ridge region to generate compatible orthotropic fields. The influence of orthotropic material was compared with the commonly used isotropic model and simplified orthotropic model.
Results: The simulation results showed that the values of stress and strain on the implant-bone interface almost increased in the orthotropic model compared to the isotropic case, especially for the cancellous bone. However, the local stress concentration was more obvious in the isotropic case compared to that in orthotropic case. The simple orthotropic model revealed irregular stress and strain distribution, compared to the isotropic model and the real orthotropic model. The influence of orthotropy was little on the implant, periodontal ligament, tooth enamel, and dentin.
Conclusion: The orthotropic material has significant effect on stress and strain of implant-bone interface in the mandible, compared with the isotropic simulation. Real orthotropic mechanical properties of mandible should be emphasized in biomechanical studies of dental implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235237 | PMC |
http://dx.doi.org/10.1155/2014/709398 | DOI Listing |
Rev Sci Instrum
January 2025
Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
High heat fluxes in electronic devices must be effectively dissipated to prevent local hotspots, which are critical for long-term device reliability. In particular, advanced semiconductor packaging trends toward thin form factor products increase the need for understanding and improving in-plane conduction heat spreading in anisotropic materials. The 2D laser-based Ångstrom method, an extension of traditional Ångstrom and lock-in thermography techniques, measures in-plane thermal properties of anisotropic sheet-like materials.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Aerospace, Physics, and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
This study advances the state of the art by computing the macroscopic elastic properties of 2D periodic functionally graded microcellular materials, incorporating both isotropic and orthotropic solid phases, as seen in additively manufactured components. This is achieved through numerical homogenization and several novel MATLAB implementations (known in this study as , , , and ). The developed codes in the current work treat each cell as a material point, compute the corresponding cell elasticity tensor using numerical homogenization, and assign it to that specific point.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, P.R. China.
The varied material and the inherent complex microstructure make predicting the effective stiffness of fused deposition modeling (FDM) printed polylactic acid (PLA)/carbon fiber (CF) composite a troublesome problem. This article proposes a microstructure scanning electron microscope (SEM) mapping modeling and numerical mean procedure to calculate the effective stiffness of FDM printing PLA/CF laminates. The printed PLA/CF parts were modeled as a continuum of 3D uniform linear elasticity with orthotropic anisotropy, and their elastic behavior was characterized by orthotropic constitutive relations.
View Article and Find Full Text PDFFront Oncol
November 2024
Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
Introduction: Glioblastoma is a grade IV solid brain tumor and has a 15-month survival rate even after treatment. Glioblastoma development is heavily influenced by retinoblastoma protein (pRB) pathway changes. The blood-brain barrier, drug resistance, and severe toxicity of Temozolamide are key obstacles in treating glioblastoma.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
R&D Innovation Department, Eagon Lautaro S.A., Ruta 5 Sur Km 644, Lautaro 4860000, Chile.
This study addresses the challenges associated with conventional plywood shear testing by introducing a novel miniaturized shear test method. This approach utilizes a controlled router toolpath for precise sample fabrication, enabling efficient material use and data acquisition. Miniaturized samples, designed with double shear zones, were tested for τ, τ, and τ configurations using a universal testing machine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!