Background: Cell types are defined at the molecular level during embryogenesis by a process called pattern formation and created by the selective utilization of combinations of sequence specific transcription factors. Developmental programs define the sets of genes that are available to each particular cell type, and real-time biochemical signaling interactions define the extent to which these sets are used at any given time and place. Gene expression is regulated through the integrated action of many -regulatory elements, including core promoters, enhancers, silencers, and insulators. The chromatin state in developing body parts provides a code to cellular populations that direct their cell fates. Chromatin profiling has been a method of choice for mapping regulatory sequences in cells that go through developmental transitions.
Results: We used antibodies against histone H3 lysine 4 trimethylations (H3K4me3) a modification associated with promoters and open/active chromatin, histone H3 lysine 27 trimethylations (H3K27me3) associated with Polycomb-repressed regions and RNA polymerase II (Pol2) associated with transcriptional initiation to identify the chromatin state signature of the mouse forelimb during mid-gestation, at embryonic day 12 (E12). The families of genes marked included those related to transcriptional regulation and embryogenesis. One third of the marked genes were transcriptionally active while only a small fraction were bivalent marked. Sequence specific transcription factors that were activated were involved in cell specification including bone and muscle formation.
Conclusion: Our results demonstrate that embryonic limb cells do not exhibit the plasticity of the ES cells but are rather programmed for a finer tuning for cell lineage specification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271808 | PMC |
http://dx.doi.org/10.2147/OAB.S59043 | DOI Listing |
DNA (Basel)
March 2024
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA.
Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the chromatin organization field, with a special focus on chromatin motor complexes cohesin and condensin.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China.
Background: Transient Receptor Potential Melastatin 4 (TRPM4), a non-selective cation channel, plays a critical role in cardiac conduction abnormalities. Brg1, an ATP-dependent chromatin remodeler, is essential for regulating gene expression in both heart development and disease. Our previous studies demonstrated Brg1 impacted on cardiac sodium/potassium channels and electrophysiological stability, its influence on TRPM4 expression and function remained unexplored.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
December 2024
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
Noncoding cis-regulatory elements (CREs), such as transcriptional enhancers, are key regulators of gene expression programs. Accessible chromatin and H3K27ac are well-recognized markers for CREs associated with their biological function. Deregulation of CREs is commonly found in hematopoietic malignancies yet the extent to which CRE dysfunction contributes to pathophysiology remains incompletely understood.
View Article and Find Full Text PDFHypertension
December 2024
Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.).
Background: Hypertension or elevated blood pressure (BP) is a worldwide clinical challenge and the leading primary risk factor for kidney dysfunctions, heart failure, and cerebrovascular disease. The kidney is a central regulator of BP by maintaining sodium-water balance. Multiple genome-wide association studies revealed that BP is a heritable quantitative trait, modulated by several genetic, epigenetic, and environmental factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!