Flow cytometry applications in the study of immunological lung disorders.

Iran J Allergy Asthma Immunol

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Published: February 2015

The use of flow cytometry in the clinical laboratory has grown substantially in the past decade. Flow cytometric analysis provides a rapid qualitative and quantitative description of multiple characteristics of individual cells. For example, it is possible to detect the cell size and granularity, aspects of DNA and RNA content and the presence of cell surface and nuclear markers which are used to characterize the phenotype of single cells. Flow cytometry has been used for the immunophenotyping of a variety of specimens including whole blood, bone marrow, serous cavity fluids, (cerebrospinal fluid) CSF, urine and all types of body fluids. The technique has also been applied to human bronchoalveolar lavage (BAL) fluid, peritoneal fluids and blood. In this review, we describe the current status of the application of flow cytometry as a diagnostic tool in various lung diseases. We focus on the analysis of BAL cell composition in chronic obstructive lung disease (COPD), asthma, lung cancer, sarcoidosis, tuberculosis and idiopathic eosinophilic pneumonia (IEP).

Download full-text PDF

Source

Publication Analysis

Top Keywords

flow cytometry
16
flow
5
cytometry applications
4
applications study
4
study immunological
4
lung
4
immunological lung
4
lung disorders
4
disorders flow
4
cytometry clinical
4

Similar Publications

Background: While most thyroid nodules are benign, 7-15% are malignant. Patients with indeterminate thyroid nodules (specifically Bethesda IV/Thy3f) often undergo diagnostic hemithyroidectomy to reach a diagnosis on final histology. The aim of this study was to assess the feasibility of circulating large extracellular vesicles as diagnostic biomarkers in patients presenting with Thy3f thyroid nodules.

View Article and Find Full Text PDF

Lighting Up Dual-Aptamer-Based DNA Logic-Gated Series Lamp Probes with Specific Membrane Proteins for Sensitive and Accurate Cancer Cell Identification.

Anal Chem

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Cixi Biomedical Research Institute, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.

Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.

View Article and Find Full Text PDF

The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay.

View Article and Find Full Text PDF

Background: Familial Mediterranean Fever is a common genetic autoinflammatory disease prevalent in the Mediterranean region. The clinical course of the disease is characterized by fever and serositis attacks. While defects in the innate immune system are known to play a role in the pathogenesis of the disease, the impact of the adaptive immune system remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!