Introduction: Despite a wide variety of therapeutic interventions for major depressive disorder (MDD), treatment resistant depression (TRD) remains to be prevalent and troublesome in clinical practice. In recent years, deep brain stimulation (DBS) has emerged as an alternative for individuals suffering from TRD not responding to combining antidepressants, multiple adjunctive strategies and electroconvulsive therapy (ECT). Although the best site for TRD-DBS is still unclear, pilot data suggests that the medial forebrain bundle (MFB) might be a key target to accomplish therapeutic efficacy in TRD patients.
Objective: To explore the anatomic, electrophysiologic, neurocognitive and treatment data supporting the MFB as a target for TRD-DBS.
Results: The MFB connects multiple targets involved in motivated behavior, mood regulation and antidepressant response. Specific phenomenology associated with TRD can be linked specifically to the superolateral branch (sl) of the MFB (slMFB). TRD patients who received DBS-slMFB reported high response/remission rates with an improvement in functioning and no significant adverse outcomes in their physical health or neurocognitive performance.
Discussion: The slMFB is an essential component of a network of structural and functional pathways connecting different areas possibly involved in the pathogenesis of mood disorders. Therefore, the slMFB should be considered as an exciting therapeutic target for DBS therapy to achieve a sustained relief in TRD patients.
Conclusion: There is an urgent need for clinical trials exploring DBS-slMFB in TRD. Further efforts should pursue measuring baseline pro-inflammatory cytokines, oxidative stress, and cognition as possible biomarkers of DBS-slMFB response in order to aid clinicians in better patient selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2014.12.003 | DOI Listing |
Math Biosci Eng
December 2024
Department of Electronics and Communication Engineering, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.
View Article and Find Full Text PDFElife
January 2025
Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers.
View Article and Find Full Text PDFThe medial habenula (MHb)-interpeduncular nucleus (IPN) pathway plays an important role in information transferring between the forebrain and the midbrain. The MHb-IPN pathway has been implicated in the regulation of fear behavior and nicotine addiction. The synapses between the ventral MHb and the IPN show a unique property, i.
View Article and Find Full Text PDFBehav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!