Recently, the traditional Chinese medicine Tripterygium wilfordii Hook f (TwHF) of the Celastraceae family has attracted increasing attention for its potential therapeutic application in patients with rheumatoid arthritis (RA). It is well accepted that TwHF exerts the antirheumatic activity and mainly depends on its potent anti-inflammatory property. To further explore the therapeutic potential of the well-defined TwHF-derived single compound - celastrol in RA, we study the therapeutic efficacy of celastrol on bone erosion in collagen-induced arthritis (CIA) mice and delineate its effects on osteoclast differentiation and functions in RANKL-induced osteoclast precursors RAW264.7 cell line. In CIA mice, daily injection of celastrol (beginning on day 28 after arthritis induction) markedly suppressed arthritis, and reduced bone damage in the joints as demonstrated by histology and bone micro-computed tomography (CT). The effects were accompanied by reductions of osteoclast cells in joints, serum tartrate-resistant acid phosphatase (TRAP) 5b, and expression of osteoclastic genes (Trap, Ctsk, Ctr, Mmp-9) and transcriptional factors (c-Fos, c-Jun and NFATc1). When RAW264.7 cells were treated with RANKL, celastrol inhibited the formation of TRAP+ multinucleated cells and the bone-resorbing activity in dose-dependent manners. Furthermore, celastrol reduced the RANKL-induced expression of osteoclastic genes and transcriptional factors, as well as phosphorylation of NF-kB and mitogen-activated protein kinases (MAPK). These findings show that celastrol could directly inhibit osteoclast formation and function, suggesting a novel therapeutic strategy of celastrol for managing RA, especially in preventing bone destruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2014.12.012 | DOI Listing |
Pharm Biol
December 2025
Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
Context: Celastrol, acknowledged as a prominent exemplar of the potential for transforming traditional medicinal compounds into contemporary pharmaceuticals, has garnered considerable attention owing to its extensive pharmacological activities. The increasing volume of publications concerning celastrol highlights its importance in current scientific inquiry. Despite the growing interest in this compound, a bibliometric analysis focused on this subject remains to be undertaken.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China. Electronic address:
Acetohydroxy acid synthase (AHAS) is a key enzyme that catalyzes the synthesis of branched-chain amino acids, which is indispensable for the survival and growth of Mycobacterium tuberculosis (Mtb). Aim to discover new AHAS inhibitors from natural products, here we performed computer assistant target-based screening for Mtb-AHAS inhibitors using Discovery Studio on TCMSP and SELLECK libraries. Mtb-AHAS structure was first simulated and verified for docking, and 80 compounds with top LIBDOCK and CDDOCK scores were obtained.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
One of the most common microvascular effects of diabetes mellitus (DM) that may result in end-stage renal failure is diabetic kidney disease (DKD). Current treatments carry a substantial residual risk of disease progression regardless of treatment. By modulating various molecular targets, pentacyclic triterpenoid celastrol has been found to possess curative properties in the treatment of diabetes and other inflammatory diseases.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, Henan Province 450003, P. R. China.
Although multifunctional drug delivery systems have shown significant potential in the treatment of diabetic nephropathy (DN), developing an efficient synergistic drug delivery strategy remains a major challenge. The purpose of this paper is to develop a nanoparticle-loaded microneedle (MN) patch transdermal drug delivery system aimed at achieving blood glucose control and reactive oxygen species (ROS) scavenging for the synergistic treatment of DN. MNs are composed of hyaluronic acid and phycocyanin (PC), both exhibiting excellent biocompatibility and degradation properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!