Comparative endothelial profiling of doxorubicin and daunorubicin in cultured endothelial cells.

Toxicol In Vitro

Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Department of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University, Medical College, Grzegorzecka 16, 31-531 Krakow, Poland. Electronic address:

Published: April 2015

Although anthracycline antibiotics have been successfully used for nearly half a century in the treatment of various malignancies, their use is limited by their cardiac and vascular toxicities, and the mechanisms of these toxicities are still not entirely clear. Herein, we comprehensively characterized cytotoxic effects of two structurally related anthracyclines, doxorubicin and daunorubicin. In nanomolar concentrations, both drugs induced DNA damage and increased nuclear area that were associated with their accumulation in the nucleus (doxorubicin ⩾50 nM and daunorubicin ⩾25 nM) as evidence by Raman microspectroscopy at 3820-4245 cm(-1). At low micromolar concentrations, doxorubicin (⩾5 μM) and daunorubicin (⩾1 μM) increased the generation of reactive oxygen species, decreased intracellular reduced glutathione, induced an alteration in endothelial elasticity and caused a reorganization of the F-actin cytoskeleton. In isolated mouse aortic rings, doxorubicin (⩾50 μM) was less potent than daunorubicin (⩾5 μM) in impairing the endothelium-dependent response. In summary, using a comprehensive endothelial profiling approach, we demonstrated clear-cut differences in the potencies to induce endotheliotoxic responses for two structurally similar chemotherapeutics, at a nuclear, cytosolic and membrane levels. Furthermore, our results suggest that the differences in the endothelial toxicities of doxorubicin and daunorubicin are linked to differences in their nuclear accumulation and the DNA damage-triggered response of the endothelium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2014.12.009DOI Listing

Publication Analysis

Top Keywords

doxorubicin daunorubicin
12
endothelial profiling
8
doxorubicin ⩾50
8
⩾5 μm
8
doxorubicin
6
daunorubicin
6
comparative endothelial
4
profiling doxorubicin
4
daunorubicin cultured
4
endothelial
4

Similar Publications

Objective: The objective of this study was to explore the possibility of treating heart failure in rats by delivering mRNA of 24-dehydrocholesterol reductase (DHCR24) into the body through lipid nanoparticles (LNPs).

Methods: We established a heart failure rat model using doxorubicin. The experiment was divided into blank, model, mRNA stock solution cardiac injection, mRNA stock solution intravenous injection, LNP-mRNA stock solution cardiac injection, and LNP-mRNA stock solution intravenous injection groups.

View Article and Find Full Text PDF

Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.

View Article and Find Full Text PDF

TP53I11 Functions Downstream of Multiple MicroRNAs to Increase ER Calcium Levels and Inhibits Cancer Cell Proliferation.

Int J Mol Sci

December 2024

Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.

Cells meticulously regulate free calcium ion (Ca) concentrations, with the endoplasmic reticulum (ER) being crucial for Ca homeostasis. Disruptions in ER Ca balance can contribute to various diseases, including cancer. Although considerable research has focused on the direct mechanisms of ER Ca regulation, the role of microRNAs (miRNAs) in this process remains underexplored.

View Article and Find Full Text PDF

Heart failure is a common and deadly disease requiring new treatments. The neuregulin-1/ERBB4 pathway offers cardioprotective benefits, but using recombinant neuregulin-1 as therapy has limitations due to the need for intravenous delivery and lack of receptor specificity. We hypothesize that small-molecule activation of ERBB4 could protect against heart damage and fibrosis.

View Article and Find Full Text PDF

METTL3-Mediated m6A Modification of ISG15 mRNA Regulates Doxorubicin-Induced Endothelial Cell Apoptosis.

J Cell Mol Med

January 2025

Zhengzhou Key Laboratory of Cardiovascular Aging, Henan Province Key Laboratory for Prevention and Treatment of Coronary Heart Disease, National Health Commission key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, China.

N6-adenosine methylation (m6A) of RNA is involved in the regulation of various diseases. However, its role in chemotherapy-related vascular endothelial injury has not yet been elucidated. We found that methyltransferase-like 3 (METTL3) expression was significantly reduced during doxorubicin (DOX)-induced apoptosis of vascular endothelial cells both in vivo and in vitro, and that silencing of METTL3 further intensified this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!