The development of safe and effective vaccines for cancer and infectious diseases remains a major goal in public health. Over the last two decades, controlled release of vaccine antigens and immunostimulant molecules has been achieved using nanometer or micron-sized delivery vehicles synthesized using biodegradable polymers. In addition to achieving a depot effect, enhanced vaccine efficacy using such delivery vehicles has been attributed to efficient targeting of antigen presenting cells such as dendritic cells. Biodegradable and biocompatible poly(lactic acid) and poly(lactic-co-glycolic acid) polymers belong to one such family of polymers that have been a popular choice of material used in the design of these delivery vehicles. This review summarizes research findings from ourselves and others highlighting the promise of poly(lactic acid)- and poly(lactic-co-glycolic acid)-based vaccine carriers in enhancing immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.14.156DOI Listing

Publication Analysis

Top Keywords

delivery vehicles
12
polylactic acid
8
acid polylactic-co-glycolic
8
polylactic-co-glycolic acid
8
acid particles
4
particles versatile
4
versatile carrier
4
carrier platforms
4
vaccine
4
platforms vaccine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!