A FRET-based DNA nano-tweezer technique for the imaging analysis of specific mRNA.

Analyst

Institute for Sustainable Sciences and Development, Hiroshima University, Higashihiroshima, Hiroshima 739-8511, Japan.

Published: February 2015

A DNA nano-tweezer (DNA-NT) structure-based target mRNA detection probe, which uses fluorescence resonance energy transfer (FRET) as a detection signal and works as a single molecule, has been developed. This FRET-paired fluorescent dye-modified DNA-NT, self-assembled from three single-stranded DNAs, alters its structure from open to closed states and produces a FRET signal in response to in vitro transcripts of Hes-1 mRNA. Our results showed that the FRET-based DNA-NT detected both GLUT1 mRNA as a pre-fixed target mRNA model and Hes-1 mRNA as a model expressed inside a living cell. These results confirm the feasibility of using the FRET-based DNA-NT for imaging analysis of target mRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an02064bDOI Listing

Publication Analysis

Top Keywords

target mrna
12
dna nano-tweezer
8
imaging analysis
8
hes-1 mrna
8
fret-based dna-nt
8
mrna model
8
mrna
7
fret-based dna
4
nano-tweezer technique
4
technique imaging
4

Similar Publications

The chloroplast RNA-binding protein CP29A supports expression during cold acclimation.

Proc Natl Acad Sci U S A

February 2025

Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.

The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma is one of the most common malignant tumors worldwide. Its complex molecular mechanisms and high tumor heterogeneity pose significant challenges for clinical treatment. The manganese ion metabolism family plays a crucial role in various biological processes, and the abnormal expression of the NUDT3 gene in multiple cancers has drawn considerable attention.

View Article and Find Full Text PDF

Approximately 10-20% of thyroid cancers are driven by gene fusions, which activate oncogenic signaling through aberrant overexpression, ligand-independent dimerization, or loss of inhibitory motifs. We identified 13 thyroid tumors with thyroglobulin (TG) gene fusions and aimed to assess their histopathology and the fusions' oncogenic and tumorigenic properties. Of 11 cases with surgical pathology, 82% were carcinomas and 18% noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP).

View Article and Find Full Text PDF

Reduced trophoblast migration and invasion contribute to unexplained recurrent spontaneous abortion (URSA). Aquaporin 3 (AQP3) plays a crucial role in facilitating trophoblast migration and invasion during early pregnancy through fetal-maternal crosstalk. This study aimed to comprehensively investigate the mechanism involving AQP3 and its modulatory effects on human extravillous trophoblast (HTR-8/SVneo cells) migration and invasion.

View Article and Find Full Text PDF

Influenza A virus NS2 protein acts on vRNA-resident polymerase to drive the transcription to replication switch.

Nucleic Acids Res

January 2025

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

The heterotrimeric RNA-dependent RNA polymerase (RdRp) of influenza A virus catalyzes viral RNA transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA) by adopting different conformations. A switch from transcription to replication occurs at a relatively late stage of infection. We recently reported that the viral NS2 protein, expressed at later stages from a spliced transcript of the NS segment messenger RNA (mRNA), inhibits transcription, promotes replication and plays a key role in the transcription-to-replication switch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!