Rapid synthesis of 4-arylchromenes from ortho-substituted alkynols: A versatile access to restricted isocombretastatin A-4 analogues as antitumor agents.

Eur J Med Chem

University Paris-Sud, CNRS, BioCIS-UMR 8076, Laboratoire de Chimie Thérapeutique, Equipe Labellisée Ligue Contre Le Cancer, LabEx LERMIT, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry F-92296, France. Electronic address:

Published: January 2015

Potent anticancer 4-arylchromene agents 6, as restricted isoCA-4 analogues, were prepared with excellent yields by a rapid and versatile synthetic pathway. First, in the presence of PTSA in EtOH, a variety of arylalkynols 9 were transformed into substituted 4-chromanones 10 in a one pot procedure which include regioselective arylalkynols hydration, alcohol etherification, MOM-cleavage, and cyclization. Further palladium coupling reactions, using aryl halides and N-tosylhydrazones 11 gave access to a small library of functionalized 4-arylchromenes 6 with good yields. From this series of 4-arylchromenes, we have identified compound 6s which inhibit tubulin assembly at a micromolar level and demonstrate a remarkable nanomolar level of cytotoxicity against four human cancer cell lines. Docking studies showed that isoCA-4 and its restricted chromene analogue 6s adopt a similar positioning in the colchicine binding-site of tubulin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2014.12.024DOI Listing

Publication Analysis

Top Keywords

rapid synthesis
4
synthesis 4-arylchromenes
4
4-arylchromenes ortho-substituted
4
ortho-substituted alkynols
4
alkynols versatile
4
versatile access
4
access restricted
4
restricted isocombretastatin
4
isocombretastatin a-4
4
a-4 analogues
4

Similar Publications

The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Metabolic requirements of dividing hepatocytes are prerequisite for liver regeneration after injury. In contrast to transcriptional dynamics during liver repair, its metabolic dependencies remain poorly defined. Here, we screened metabolic genes differentially regulated during liver regeneration, and report that SLC13A2, a transporter for TCA cycle intermediates, is decreased in rapid response to partial hepatectomy in mice and recovered along restoration of liver mass and function.

View Article and Find Full Text PDF

Background: Point-of-care testing (POCT) is a valuable diagnostic approach for identifying pathogens such as Group A Streptococcus (GAS) and influenza. Early detection through POCT allows for timely initiation of appropriate treatments improving public health outcomes and minimizing antibiotic misuse. Community pharmacists are well positioned to offer POCT and treatment, but they face significant system level barriers to widespread implementation and reach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!