The adsorption of α-cyanoacrylic acid (CAA) on anatase TiO2 (101) and (001) surfaces, including adsorption energies, structures, and electronic properties, have been studied by means of density functional theory calculations in connection with ultrasoft pseudopotential and generalized gradient approximation based upon slab models. The most stable structure of CAA on anatase TiO2 (101) surface is the dissociated bidentate configuration where the cyano N and carbonyl O bond with two adjacent surface Ti atoms along [010] direction and the dissociated H binds to the surface bridging O which connects the surface Ti bonded with carbonyl O. While for the adsorption of CAA on (001) surface, the most stable structure is the bidentate configuration through the dissociation of hydroxyl in carboxyl moiety. The O atoms of carboxyl bond with two neighbor surface Ti along [100] direction, and the H from dissociated hydroxyl interacts with surface bridging O, generating OH species. The adsorption energies are estimated to be 1.02 and 3.25 eV for (101) and (001) surfaces, respectively. The analysis of density of states not only suggests the bonds between CAA and TiO2 surfaces are formed but also indicates that CAA adsorptions on TiO2 (101) and (001) surfaces provide feasible mode for photo-induced electron injection through the interface between TiO2 and CAA. This is resulted from that, compared with the contribution of CAA orbitals in valence bands, the conduction bands which are mainly composed of Ti 3d orbitals have remarkable reduction of the component of CAA orbitals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4903790 | DOI Listing |
Talanta
January 2025
Department of Chemistry, Yanbian University, Yanji, 133002, Jilin, China. Electronic address:
Exosomes have emerged as a powerful biomarker for early cancer diagnosis, however, accurately detecting cancer-derived exosomes in biofluids remains a crucial challenge. In this study, we present a novel label-free electrochemical biosensor utilizing titanium dioxide nanotube array films (TiONTAs) for the sensitive detection of exosomes in complex biological samples. This innovative biosensor takes advantage of the excellent electrochemical properties of TiONTAs and their specific interactions with the phosphate groups of exosomes.
View Article and Find Full Text PDFJ Fluoresc
December 2024
National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan.
Fluorescence spectroscopy employed to compute the antibacterial potential of pure ZnO and Titania (TiO) loaded ZnO (TiO: 2%, 4%, 6%, and 8%) electrospun nanofibers. The study of electrospun nanofibers followed by their structural, morphological and antibacterial properties has been revealed through fluorescence spectroscopy. X-ray diffraction (XRD) analysis of nanofibers calcinated at 600 °C revealed the presence of polycrystalline wurtzite hexagonal crystallographic planes of ZnO with preferred orientation along (101) direction.
View Article and Find Full Text PDFWater Res
December 2024
School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:
This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.
View Article and Find Full Text PDFLangmuir
December 2024
School of Materials, Sun Yat-sen University, Shenzhen 518107, China.
Hydrogen sulfide (HS), carbonyl sulfide (COS), and dimethyl sulfide (DMS) are the primary sulfur compounds found in seawater, which cause pitting corrosion on the oxide passivation film of titanium, known as "the marine metals". In this study, density functional theory (DFT) was used to analyze the adsorption and surface electronic properties of these three small molecules on the anatase TiO(101) surface. The analysis was conducted through adsorption energy, work function, Mulliken charge population, and density of states (DOS).
View Article and Find Full Text PDFNanotechnology
December 2024
IMDEA Materials Institute, C/ Eric Kandel 2, Getafe, Madrid, 28906, SPAIN.
Although Mg-Li dual metal-ion batteries are proposed as a superior system that unite safety of Mg-batteries and performance of Li-ion based systems, its practical implantation is limited due to the lack of reliable high performance cathodes. Herein, we report a high-performance Mg-Li dual metal-ion battery system based on highly pseudocapacitive hierarchical TiO2-B nanosheet assembled spheres (NS) cathode. This 2D cathode displayed exceptional pseudocapacitance (a maximum of 93%) specific capacity (303 mAh/g at 25 mA/g), rate performance (210 mAh/g at 1A/g), consistent cycling (retain ~100% capacity for 3000 cycles at 1A/g), coulombic efficiency (nearly 100%) and fast-charging (~12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!