Angiopoietin like-2 (angptl2) is a circulating pro-inflammatory and pro-oxidative protein, but its role in regulating cerebral endothelial function remains unknown. We hypothesized that in mice knockdown (KD) of angptl2, cerebral endothelial function would be protected against ANG II-induced damage. Subcutaneous infusion of ANG II (200 ng·kg(-1)·min(-1), n = 15) or saline (n = 15) was performed in 20-wk-old angptl2 KD mice and wild-type (WT) littermates for 14 days. In saline-treated KD and WT mice, the amplitude and the sensitivity of ACh-induced dilations of isolated cerebral arteries were similar. However, while endothelial nitric oxide (NO) synthase (eNOS)-derived O2 (-)/H2O2 contributed to dilation in WT mice, eNOS-derived NO (P < 0.05) was involved in KD mice. ANG II induced cerebral endothelial dysfunction only in WT mice (P < 0.05), which was reversed (P < 0.05) by either N-acetyl-l-cysteine, apocynin, gp91ds-tat, or indomethacin, suggesting the contribution of reactive oxygen species from Nox2 and Cox-derived contractile factors. In KD mice treated with ANG II, endothelial function was preserved, likely via Nox-derived H2O2, sensitive to apocynin and PEG-catalase (P < 0.05), but not to gp91ds-tat. In the aorta, relaxation similarly and essentially depended on NO; endothelial function was maintained after ANG II infusion in all groups, but apocynin significantly reduced aortic relaxation in KD mice (P < 0.05). Protein expression levels of Nox1/2 in cerebral arteries were similar among all groups, but that of Nox4 was greater (P < 0.05) in saline-treated KD mice. In conclusion, knockdown of angptl2 may be protective against ANG II-induced cerebral endothelial dysfunction; it favors the production of NO, likely increasing endothelial cell resistance to stress, and permits the expression of an alternative vasodilatory Nox pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00278.2014 | DOI Listing |
Mol Neurodegener
January 2025
Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.
View Article and Find Full Text PDFSci Rep
January 2025
School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature.
View Article and Find Full Text PDFNeurol Res
January 2025
Neurology Department, Faculty of Medicine, Cairo University, Giza, Cairo, Egypt.
Background: Endothelial dysfunction and inflammation are linked to migraine, which may contribute to atherogenesis and increase the risk of ischemia. In migraineurs, preclinical vascular involvement manifested as compromised structural characteristics of vessel wall has not received enough attention or evaluation.
Objectives: To measure plasma pentraxin 3 as an indicator of endothelial dysfunction in migraine in comparison to controls and to examine its correlation with clinical characteristics, headache severity, and brain magnetic resonance imaging findings.
Brain
January 2025
Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan.
Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!