Endocarditis pathogen promotes vegetation formation by inducing intravascular neutrophil extracellular traps through activated platelets.

Circulation

From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.).

Published: February 2015

Background: Endocarditis-inducing streptococci form multilayered biofilms in complex with aggregated platelets on injured heart valves, but the host factors that interconnect and entrap these bacteria-platelet aggregates to promote vegetation formation were unclear.

Methods And Results: In a Streptococcus mutans endocarditis rat model, we identified layers of neutrophil extracellular traps interconnecting and entrapping bacteria-platelet aggregates inside vegetation that could be reduced significantly in size along with diminished colonizing bacteria by prophylaxis with intravascular DNase I alone. The combination of activated platelets and specific immunoglobulin G-adsorbed bacteria are required to induce the formation of neutrophil extracellular traps through multiple activation pathways. Bacteria play key roles in coordinating the signaling through spleen tyrosine kinase, Src family kinases, phosphatidylinositol-3-kinase, and p38 mitogen-activated protein kinase pathways to upregulate the expression of P-selectin in platelets, while inducing reactive oxygen species-dependent citrullination in the arm of neutrophils. Neutrophil extracellular traps in turn serve as the scaffold to further enhance and entrap bacteria-platelet aggregate formation and expansion.

Conclusions: Neutrophil extracellular traps promote and expand vegetation formation through enhancing and entrapping bacteria-platelet aggregates on the injured heart valves.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.011432DOI Listing

Publication Analysis

Top Keywords

neutrophil extracellular
20
extracellular traps
20
vegetation formation
12
bacteria-platelet aggregates
12
activated platelets
8
injured heart
8
heart valves
8
entrap bacteria-platelet
8
entrapping bacteria-platelet
8
formation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!