Over the past two decades, much information has appeared on electrostatically driven molecular mechanisms of protein self-assembly and formation of aggregates of different morphology, varying from soluble amorphous structures to highly-ordered amyloid-like fibrils. Protein aggregation represents a special tool in biomedicine and biotechnology to produce biological materials for a wide range of applications. This has awakened interest in identification of pH-triggered regulators of transformation of aggregation-prone proteins into structures of higher order. The objective of the present study is to elucidate the effects of low-molecular-weight biogenic agents on aggregation and formation of supramolecular structures of human recombinant insulin, as a model therapeutic protein. Using dynamic light scattering, turbidimetry, circular dichroism, fluorescence spectroscopy, atomic force microscopy, transmission electron microscopy, and nuclear magnetic resonance, we have demonstrated that the amino acid l-arginine (Arg) has the striking potential to influence insulin aggregation propensity. It was shown that modification of the net charge of insulin induced by changes in the pH level of the incubation medium results in dramatic changes in the interaction of the protein with Arg. We have revealed the dual effects of Arg, highly dependent on the pH level of the solution - suppression or acceleration of the aggregation of insulin at pH 7.0 or 8.0, respectively. These effects can be regulated by manipulating the pH of the environment. The results of this study may be of interest for development of appropriate drug formulations and for the more general insight into the functioning of insulin in living systems, as the protein is known to release by exocytosis from pancreatic beta cells in a pH-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2014.12.006DOI Listing

Publication Analysis

Top Keywords

insulin aggregation
8
insulin
6
aggregation
5
protein
5
ph-responsive modulation
4
modulation insulin
4
aggregation structural
4
structural transformation
4
transformation aggregates
4
aggregates decades
4

Similar Publications

Misfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection sites poses a challenge for diabetic patients who rely on insulin therapy.

View Article and Find Full Text PDF

Winery By-Products and Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor.

Front Biosci (Landmark Ed)

January 2025

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.

Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.

View Article and Find Full Text PDF

Decoding the Contribution of IAPP Amyloid Aggregation to Beta Cell Dysfunction: A Systematic Review and Epistemic Meta-Analysis of Type 1 Diabetes.

Int J Mol Sci

January 2025

Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.

Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.

View Article and Find Full Text PDF

Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.

View Article and Find Full Text PDF

The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular environment. Many efforts have been and are devoted to the search for cosolvents and cosolutes able to interfere with amyloid aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!