Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Specificity of transcranial motor-evoked potentials (MEPs) is low because amplitude fluctuation is common, which seems due to several technical and fundamental reasons including difficulty in electrodes positioning and fixation for transcranial stimulation and susceptibility to anaesthesia. This study aimed to investigate the feasibility, safety and stability of our novel technique of transoesophageal spinal cord stimulation to improve the stability of MEPs.
Methods: Ten anaesthetized adult beagle dogs were used. Transoesophageal stimulation was performed between the oesophageal luminal surface electrode (cathode) and a subcutaneous needle electrode (anode) at the fourth to fifth thoracic vertebra level. Stimulation was achieved with a train of five pulses delivered at 2.0-ms intervals. Compound muscle action potentials were recorded from four limbs and external anal sphincter muscles. Stability to anaesthetic agents was tested at varying speeds of propofol and remifentanil, and effects of varying concentration of sevoflurane inhalation were also evaluated.
Results: Transoesophageal MEPs could be recorded without difficulty in all dogs. Fluoroscopic evaluation showed that electrodes misalignment up to 5 cm cranially or caudally could be tolerated. Stimulus intensity to achieve maximum amplitude of hindlimb muscle potentials on both sides was significantly lower by transoesophageal stimulation than by transcranial stimulation (383 ± 41 vs 533 ± 121 V, P = 0.02) and had less interindividual variability. Latency of transoesophageal MEPs was shorter than that of transcranial MEPs at every recording point. No arrhythmia was provoked during stimulation. Animals that were allowed to recover showed no neurological abnormality. In the two sacrificed animals, the explanted oesophagus showed no mucosal injury. Stability to varying dose of anaesthetic agents was similar between transoesophageal and transcranial stimulation, except for the potentials of forelimbs by transoesophageal stimulation that were resistant to anaesthetic depression.
Conclusions: Transoesophageal stimulation for MEPs monitoring was feasible without difficulty and safe. Although its stability to anaesthetic agents was similar to that of transcranial stimulation, its technical ease and small interindividual variability warrants further studies on the response to spinal cord ischaemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ejcts/ezu496 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!