Molecular genotyping and quantitation assay for rotavirus surveillance.

J Virol Methods

Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States.

Published: March 2015

Rotavirus genotyping is useful for surveillance purposes especially in areas where rotavirus vaccination has been or will be implemented. RT-PCR based molecular methods have been applied widely, but quantitative assays targeting a broad spectrum of genotypes have not been developed. Three real time RT-PCR panels were designed to identify G1, G2, G9, G12 (panel GI), G3, G4, G8, G10 (panel GII), and P[4], P[6], P[8], P[10], P[11] (panel P), respectively. An assay targeting NSP3 was included in both G panels as an internal control. The cognate assays were also formulated as one RT-PCR-Luminex panel for simultaneous detection of all the genotypes listed above plus P[9]. The assays were evaluated with various rotavirus isolates and 89 clinical samples from Virginia, Bangladesh and Tanzania, and exhibited 95% (81/85) sensitivity compared with the conventional RT-PCR-Gel-electrophoresis method, and 100% concordance with sequencing. Real time assays identified a significantly higher rate of mixed genotypes in Bangladeshi samples than the conventional gel-electrophoresis-based RT-PCR assay (32.5% versus 12.5%, P<0.05). In these mixed infections, the relative abundance of the rotavirus types could be estimated by Cq values. These typing assays detect and discriminate a broad range of G/P types circulating in different geographic regions with high sensitivity and specificity and can be used for rotavirus surveillance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417650PMC
http://dx.doi.org/10.1016/j.jviromet.2014.12.001DOI Listing

Publication Analysis

Top Keywords

real time
8
molecular genotyping
4
genotyping quantitation
4
quantitation assay
4
rotavirus
4
assay rotavirus
4
rotavirus surveillance
4
surveillance rotavirus
4
rotavirus genotyping
4
genotyping surveillance
4

Similar Publications

This study provides preliminary evidence for real-time functional magnetic resonance imaging neurofeedback (rt-fMRI NF) as a potential intervention approach for internet gaming disorder (IGD). In a preregistered, randomized, single-blind trial, young individuals with elevated IGD risk were trained to downregulate gaming addiction-related brain activity. We show that, after 2 sessions of neurofeedback training, participants successfully downregulated their brain responses to gaming cues, suggesting the therapeutic potential of rt-fMRI NF for IGD (Trial Registration: ClinicalTrials.

View Article and Find Full Text PDF

Background: Treatment of atrial fibrillation (AF) with catheter ablation (CA) has evolved significantly. However, real-world data on long-term outcomes are limited, particularly in low- and middle-income countries.

Objective: This multicenter prospective cohort of consecutive patients aimed to evaluate the safety and efficacy of first-time CA for AF in Southern Brazil from 2009 to 2024.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Multimodal sensing using soft body dynamics plays a crucial role in controlling soft robotic motions. An intriguing application of such soft robot control is to mimic whiskers and digitize soft body motion through whisker dynamics. The challenge herein is to simultaneously monitor the directions, speed, force, and slip information of the whisker motion.

View Article and Find Full Text PDF

Safety-assured high-speed navigation for MAVs.

Sci Robot

January 2025

Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong, China.

Micro air vehicles (MAVs) capable of high-speed autonomous navigation in unknown environments have the potential to improve applications like search and rescue and disaster relief, where timely and safe navigation is critical. However, achieving autonomous, safe, and high-speed MAV navigation faces systematic challenges, necessitating reduced vehicle weight and size for high-speed maneuvering, strong sensing capability for detecting obstacles at a distance, and advanced planning and control algorithms maximizing flight speed while ensuring obstacle avoidance. Here, we present the safety-assured high-speed aerial robot (SUPER), a compact MAV with a 280-millimeter wheelbase and a thrust-to-weight ratio greater than 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!