Background: Animal models of cancer are useful to generate complementary datasets for comparison to human tumor data. Insertional mutagenesis screens, such as those utilizing the Sleeping Beauty (SB) transposon system, provide a model that recapitulates the spontaneous development and progression of human disease. This approach has been widely used to model a variety of cancers in mice. Comprehensive mutation profiles are generated for individual tumors through amplification of transposon insertion sites followed by high-throughput sequencing. Subsequent statistical analyses identify common insertion sites (CISs), which are predicted to be functionally involved in tumorigenesis. Current methods utilized for SB insertion site analysis have some significant limitations. For one, they do not account for transposon footprints - a class of mutation generated following transposon remobilization. Existing methods also discard quantitative sequence data due to uncertainty regarding the extent to which it accurately reflects mutation abundance within a heterogeneous tumor. Additionally, computational analyses generally assume that all potential insertion sites have an equal probability of being detected under non-selective conditions, an assumption without sufficient relevant data. The goal of our study was to address these potential confounding factors in order to enhance functional interpretation of insertion site data from tumors.

Results: We describe here a novel method to detect footprints generated by transposon remobilization, which revealed minimal evidence of positive selection in tumors. We also present extensive characterization data demonstrating an ability to reproducibly assign semi-quantitative information to individual insertion sites within a tumor sample. Finally, we identify apparent biases for detection of inserted transposons in several genomic regions that may lead to the identification of false positive CISs.

Conclusion: The information we provide can be used to refine analyses of data from insertional mutagenesis screens, improving functional interpretation of results and facilitating the identification of genes important in cancer development and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378557PMC
http://dx.doi.org/10.1186/1471-2164-15-1150DOI Listing

Publication Analysis

Top Keywords

insertion sites
16
functional interpretation
12
mutagenesis screens
12
sleeping beauty
8
data insertional
8
insertional mutagenesis
8
development progression
8
insertion site
8
generated transposon
8
transposon remobilization
8

Similar Publications

Constructing well-dispersed active phase spontaneous redox for electrochemical nitrate reduction to ammonia.

Chem Commun (Camb)

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.

View Article and Find Full Text PDF

The extent of functional sequences within the human genome is a pivotal yet debated topic in biology. Although high-throughput reverse genetic screens have made strides in exploring this, they often limit their scope to known genomic elements and may introduce non-specific effects. This underscores the urgent need for novel functional genomics tools that enable a deeper, unbiased understanding of genome functionality.

View Article and Find Full Text PDF

Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .

View Article and Find Full Text PDF

Purpose: Few studies have explored the bone response in dental implant sites prepared using a piezoelectric device, indicating moderate effectiveness in enhancing secondary stability and osteogenesis. This study seeks to expand our understanding of the changes in biological, clinical, and radiographic parameters, during the initial phases of osseointegration in sites prepared with piezoelectric surgery.

Materials And Methods: Two implant sites were prepared in the tibia of four minipigs.

View Article and Find Full Text PDF

Background: The Achilles tendon is one of the most frequent sites of tendinopathy in both healthy and pathological subjects. An innovative approach for the quantitative assessment of the Achilles tendon structure, named Ultrasound Tissue Characterization (UTC), has recently been developed. However, no previous study performed the UTC-based assessment of the tendon structure in rheumatologic patients affected by insertional Achilles tendinopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!