Anthropogenic climate change is altering temperature regimes for coastal marine fishes. However, given that temperature changes will not occur in isolation of other stressors, it is necessary to explore the potential consequences of stress on the thermal tolerances and preferences of tropical marine fish in order to understand the thresholds for survival, and predict the associated coastal ecological consequences. In this study, we used exogenous cortisol injections to investigate the effects of a thermal challenge on checkered puffers (Sphoeroides testudineus) as a secondary stressor. There were no significant differences between control and cortisol-treated fish 48h following cortisol treatment for swimming ability (using a chase to exhaustion protocol), blood glucose concentrations or standard metabolic rate. In the lab, control and cortisol-treated puffers were exposed to ambient (29.1±1.5°C), ambient +5°C (heat shock) and ambient -5°C (cold shock) for 4h and to evaluate the consequences of abrupt temperature change on puff performance and blood physiology. Following cold shock, control fish exhibited increases in cortisol levels and weak 'puff' performance. Conversely, fish dosed with cortisol exhibited consistently high cortisol levels independent of thermal treatment, although there was a trend for an attenuated cortisol response in the cortisol-treated fish to the cold shock treatment. A 20-day complementary field study conducted in the puffer's natural habitat, a tidal creek in Eleuthera, The Bahamas, revealed that cortisol-injected fish selected significantly cooler temperatures, measured using accumulated thermal units, when compared to controls. These results, and particularly the discrepancies between consequences documented in the laboratory and the ecological trends observed in the field, highlight the need to establish the link between laboratory and field data to successfully develop management policies and conservation initiatives with regards to anthropogenic climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2014.11.003 | DOI Listing |
ACS Omega
January 2025
School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Hot dry rock (HDR) geothermal development faces challenges due to the difficulty of stimulating fluid flow and heat-exchange fracture channels within deep, low-porosity, and low-permeability reservoirs. A liquid nitrogen cyclic cold shock method was proposed, using liquid nitrogen as a fracturing fluid. The large temperature difference between the liquid nitrogen and the hot rock induces thermal stress, forming a complex pore-fracture network.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
Background: Low temperatures disrupt nitrogen metabolism in tobacco, resulting in lower nicotine content in the leaves. 24-epibrassinolide (EBR) is a widely used plant growth regulator known for its roles in enhancing cold tolerance and nitrogen metabolism. Nevertheless, it remains unclear whether EBR enhances leaf nicotine content under low temperature conditions during the mature stage of flue-cured tobacco.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
January 2025
Department of Biology, Widener University, Chester, Pennsylvania, USA.
Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.
View Article and Find Full Text PDFResusc Plus
January 2025
School of Clinical and Biomedical Sciences, University of Bolton, United Kingdom.
Background: Although the association of peripheral skin temperature with infection, serious illness and death have been recognised for centuries, few studies have explicitly compared this finding with other bedside indicators of illness severity. This study compared subjectively assessed dorsal forearm skin temperature and moisture with other indicators of illness severity.
Methods: Non-interventional observational study of acutely ill medical patients admitted to a low-resource Ugandan hospital, which examined the association of subjectively assessed dorsal forearm skin temperature and other bedside findings with death within 24 h.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!