The threat of global warming has prompted numerous recent studies on the thermal tolerance of marine species. A widely used method to determine the upper thermal limit has been the Critical Thermal Maximum (CTMax), a dynamic method, meaning that temperature is increased gradually until a critical point is reached. This method presents several advantages over static methods, however, there is one main issue that hinders interpretation and comparison of CTMax results: the rate at which the temperature is increased. This rate varies widely among published protocols. The aim of the present work was to determine the effect of warming rate on CTMax values, using different animal groups. The influence of the thermal niche occupied by each species (intertidal vs subtidal) and habitat (intertidal vs subtidal) was also investigated. CTMax were estimated at three different rates: 1°Cmin(-1), 1°C30min(-1) and 1°Ch(-1), in two species of crab, Eurypanopeus abbreviatus and Menippe nodifrons, shrimp Palaemon northropi and Hippolyte obliquimanus and fish Bathygobius soporator and Parablennius marmoreus. While there were significant differences in the effect of warming rates for some species, for other species warming rate produced no significant differences (H. obliquimanus and B. soporator). While in some species slower warming rates lead to lower CTMax values (P. northropi and P. marmoreus) in other species the opposite occurred (E. abbreviatus and M. nodifrons). Biological group has a significant effect with crabs' CTMax increasing at slower warming rates, which did not happen for shrimp and fish. Subtidal species presented lower CTMax, at all warming rates tested. This study highlights the importance of estimating CTMax values at realistic rates that species encounter in their environment and thus have an ecological value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2014.10.012 | DOI Listing |
J Environ Manage
December 2024
College of Forestry, Guizhou University, Guiyang, 550025, China; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. Electronic address:
In recent years, the rapid development of the global economy has led to an increasing impact of the ongoing climate warming phenomenon on the hydrological cycle. In this context, the runoff changes affected by human activities are more severe. This study classifies climate scenarios based on carbon emission levels into "low-carbon" (SSP1-2.
View Article and Find Full Text PDFFertil Steril
December 2024
Shady Grove Fertility, San Diego, California, USA.
Hum Reprod
December 2024
IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain.
Study Question: Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data?
Summary Answer: It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity.
What Is Known Already: Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation.
J Exp Biol
December 2024
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany.
Increasing frequencies of heatwaves threaten marine ectotherm species but not all alike. In exposed habitats, some species rely on a higher capacity for passive tolerance at higher temperatures, thereby extending time-dependent survival limits. Here we assess how the involvement of the cardiovascular system in extended tolerance at the margins of the thermal performance curve is dependent on warming rate.
View Article and Find Full Text PDFAlthough we have evidence that many organisms are exhibiting declines in body size in response to climate warming, we have little knowledge of underlying mechanisms or how associated phenotypic suites may coevolve. The better we understand coadaptations among physiology, morphology, and life history, the more accurate our predictions will be of organismal response to changing thermal environments. This is especially salient for ectotherms because they comprise 99% of species worldwide and are key to functioning ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!