Acute lung injury is a common consequence of sepsis, a life-threatening inflammatory response caused by severe infection. In this study, we elucidate the attenuating effects of synthetic Arg-Gly-Asp-Ser peptides (RGDs) on acute lung injury in a sepsis mouse model. We further reveal that the beneficial effects of RGDs stem from their negative regulation of the Wisp1 (WNT1-inducible signaling pathway)-integrin β6 pathway. After inducing sepsis using cecal ligation and puncture (CLP), mice were randomized into experimental and control groups, and survival rates were recorded over 7 days, whereas only 20% of mice subjected to CLP survived when compared with untreated controls; the addition of RGDs to this treatment regimen dramatically increased the survival rate to 80%. Histological analysis revealed acute lung injury in CLP-treated mice, whereas those subjected to the combined treatment of CLP and RGDs showed a considerable decrease in lung injury severity. The addition of RGDs also dramatically attenuated other common sepsis-associated effects, such as increased white blood cell number in bronchoalveolar lavage fluid and decreased pulmonary capillary barrier function. Furthermore, treatment with RGDs decreased the serum and bronchoalveolar lavage fluid levels of inflammatory cytokines such as tumor necrosis factor α and interleukin 6, contrary to the CLP treatment alone that increased the levels of these proteins. Interestingly, however, RGDs had no detectable effect on bacterial invasion following sepsis induction. In addition, mice treated with RGDs showed decreased levels of wisp1 and integrin β6 when compared with CLP-treated mice. In the present study, a linkage between Wisp1 and integrin β6 was evaluated in vivo. Most strikingly, RGDs resulted in a decreased association of Wisp1 with integrin β6 based on coimmunoprecipitation analyses. These data suggest that RGDs ameliorate acute lung injury in a sepsis mouse model by inhibiting the Wisp1-integrin β6 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0000000000000313 | DOI Listing |
Immunol Invest
January 2025
Traditional Chinese Medicine, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
Objective: This study investigated the mechanism of baicalin (BIA) attenuating the inflammatory response and lung injury in mycoplasma pneumoniae pneumonia (MPP) mice.
Methods: MPP mouse models were established and then treated with BIA, azithromycin, or NLRP3 inflammasome activator. Lung wet-to-dry weight (W/D) ratio were weighed.
Comb Chem High Throughput Screen
January 2025
Department of Pharmacy, Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China.
Objective: This study aimed to explore the active components and potential mechanism of Tanre Qing Injection (TRQI) in the treatment of Acute Respiratory Distress Syndrome (ARDS) using network pharmacology, molecular docking, and animal experiments.
Methods: The targets of active ingredients were identified using the TCMSP and Swiss Target Prediction databases. The targets associated with ARDS were obtained from the GeneCards database, Mala card database, and Open Targets Platform.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue
December 2024
Department of Critical Care Medicine, the Second Affiliated Hospital of Xingtai Medical College, Xingtai 054000, Hebei, China.
Objective: To construct a risk prediction model for elderly severe patients with pneumonia infection, and analyze the prevention effect of 1M3S nursing plan under early warning mode.
Methods: Firstly, 180 elderly severe patients admitted to the department of intensive care unit (ICU) of the Second Affiliated Hospital of Xingtai Medical College from September 2020 to September 2021 were enrolled. Their clinical data were collected and retrospectively analyzed, and they were divided into infected group and non-infected group according to whether they developed severe pneumonia.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue
December 2024
Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China. Corresponding author: Shen Feng, Email:
Objective: To systematically evaluate the impact of aspirin on the pulmonary inflammatory response in animal models of acute lung injury/acute respiratory distress syndrome (ALI/ARDS).
Methods: Experimental research on aspirin therapy or prevention of ALI/ARDS in animal models were searched in PubMed, Web of Science, Cochrane library, Embase, China biology medicine, CNKI, Wanfang, VIP. The search time limit was from the establishment of the database to July 17, 2023.
Ann Pharmacother
January 2025
College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
Background: Among people with cystic fibrosis (PwCF), methicillin-resistant (MRSA)-associated acute pulmonary exacerbations (APEs) have been increasing in prevalence and can cause rapid declines in lung function and increased mortality. Fortunately, since 2019, incidence has started to decline.
Objective: The purpose of this study was to evaluate if doxycycline has comparable efficacy to vancomycin for the treatment of APEs in PwCF.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!